import sys import math import torch from torch import nn from torch.nn import functional as F from torch.autograd import Function from torch.nn.utils.spectral_norm import spectral_norm as SpectralNorm class LayerNorm2d(nn.Module): def __init__(self, n_out, affine=True): super(LayerNorm2d, self).__init__() self.n_out = n_out self.affine = affine if self.affine: self.weight = nn.Parameter(torch.ones(n_out, 1, 1)) self.bias = nn.Parameter(torch.zeros(n_out, 1, 1)) def forward(self, x): normalized_shape = x.size()[1:] if self.affine: return F.layer_norm(x, normalized_shape, \ self.weight.expand(normalized_shape), self.bias.expand(normalized_shape)) else: return F.layer_norm(x, normalized_shape) class ADAINHourglass(nn.Module): def __init__(self, image_nc, pose_nc, ngf, img_f, encoder_layers, decoder_layers, nonlinearity, use_spect): super(ADAINHourglass, self).__init__() self.encoder = ADAINEncoder(image_nc, pose_nc, ngf, img_f, encoder_layers, nonlinearity, use_spect) self.decoder = ADAINDecoder(pose_nc, ngf, img_f, encoder_layers, decoder_layers, True, nonlinearity, use_spect) self.output_nc = self.decoder.output_nc def forward(self, x, z): return self.decoder(self.encoder(x, z), z) class ADAINEncoder(nn.Module): def __init__(self, image_nc, pose_nc, ngf, img_f, layers, nonlinearity=nn.LeakyReLU(), use_spect=False): super(ADAINEncoder, self).__init__() self.layers = layers self.input_layer = nn.Conv2d(image_nc, ngf, kernel_size=7, stride=1, padding=3) for i in range(layers): in_channels = min(ngf * (2**i), img_f) out_channels = min(ngf *(2**(i+1)), img_f) model = ADAINEncoderBlock(in_channels, out_channels, pose_nc, nonlinearity, use_spect) setattr(self, 'encoder' + str(i), model) self.output_nc = out_channels def forward(self, x, z): out = self.input_layer(x) out_list = [out] for i in range(self.layers): model = getattr(self, 'encoder' + str(i)) out = model(out, z) out_list.append(out) return out_list class ADAINDecoder(nn.Module): """docstring for ADAINDecoder""" def __init__(self, pose_nc, ngf, img_f, encoder_layers, decoder_layers, skip_connect=True, nonlinearity=nn.LeakyReLU(), use_spect=False): super(ADAINDecoder, self).__init__() self.encoder_layers = encoder_layers self.decoder_layers = decoder_layers self.skip_connect = skip_connect use_transpose = True for i in range(encoder_layers-decoder_layers, encoder_layers)[::-1]: in_channels = min(ngf * (2**(i+1)), img_f) in_channels = in_channels*2 if i != (encoder_layers-1) and self.skip_connect else in_channels out_channels = min(ngf * (2**i), img_f) model = ADAINDecoderBlock(in_channels, out_channels, out_channels, pose_nc, use_transpose, nonlinearity, use_spect) setattr(self, 'decoder' + str(i), model) self.output_nc = out_channels*2 if self.skip_connect else out_channels def forward(self, x, z): out = x.pop() if self.skip_connect else x for i in range(self.encoder_layers-self.decoder_layers, self.encoder_layers)[::-1]: model = getattr(self, 'decoder' + str(i)) out = model(out, z) out = torch.cat([out, x.pop()], 1) if self.skip_connect else out return out class ADAINEncoderBlock(nn.Module): def __init__(self, input_nc, output_nc, feature_nc, nonlinearity=nn.LeakyReLU(), use_spect=False): super(ADAINEncoderBlock, self).__init__() kwargs_down = {'kernel_size': 4, 'stride': 2, 'padding': 1} kwargs_fine = {'kernel_size': 3, 'stride': 1, 'padding': 1} self.conv_0 = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_down), use_spect) self.conv_1 = spectral_norm(nn.Conv2d(output_nc, output_nc, **kwargs_fine), use_spect) self.norm_0 = ADAIN(input_nc, feature_nc) self.norm_1 = ADAIN(output_nc, feature_nc) self.actvn = nonlinearity def forward(self, x, z): x = self.conv_0(self.actvn(self.norm_0(x, z))) x = self.conv_1(self.actvn(self.norm_1(x, z))) return x class ADAINDecoderBlock(nn.Module): def __init__(self, input_nc, output_nc, hidden_nc, feature_nc, use_transpose=True, nonlinearity=nn.LeakyReLU(), use_spect=False): super(ADAINDecoderBlock, self).__init__() # Attributes self.actvn = nonlinearity hidden_nc = min(input_nc, output_nc) if hidden_nc is None else hidden_nc kwargs_fine = {'kernel_size':3, 'stride':1, 'padding':1} if use_transpose: kwargs_up = {'kernel_size':3, 'stride':2, 'padding':1, 'output_padding':1} else: kwargs_up = {'kernel_size':3, 'stride':1, 'padding':1} # create conv layers self.conv_0 = spectral_norm(nn.Conv2d(input_nc, hidden_nc, **kwargs_fine), use_spect) if use_transpose: self.conv_1 = spectral_norm(nn.ConvTranspose2d(hidden_nc, output_nc, **kwargs_up), use_spect) self.conv_s = spectral_norm(nn.ConvTranspose2d(input_nc, output_nc, **kwargs_up), use_spect) else: self.conv_1 = nn.Sequential(spectral_norm(nn.Conv2d(hidden_nc, output_nc, **kwargs_up), use_spect), nn.Upsample(scale_factor=2)) self.conv_s = nn.Sequential(spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_up), use_spect), nn.Upsample(scale_factor=2)) # define normalization layers self.norm_0 = ADAIN(input_nc, feature_nc) self.norm_1 = ADAIN(hidden_nc, feature_nc) self.norm_s = ADAIN(input_nc, feature_nc) def forward(self, x, z): x_s = self.shortcut(x, z) dx = self.conv_0(self.actvn(self.norm_0(x, z))) dx = self.conv_1(self.actvn(self.norm_1(dx, z))) out = x_s + dx return out def shortcut(self, x, z): x_s = self.conv_s(self.actvn(self.norm_s(x, z))) return x_s def spectral_norm(module, use_spect=True): """use spectral normal layer to stable the training process""" if use_spect: return SpectralNorm(module) else: return module class ADAIN(nn.Module): def __init__(self, norm_nc, feature_nc): super().__init__() self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) nhidden = 128 use_bias=True self.mlp_shared = nn.Sequential( nn.Linear(feature_nc, nhidden, bias=use_bias), nn.ReLU() ) self.mlp_gamma = nn.Linear(nhidden, norm_nc, bias=use_bias) self.mlp_beta = nn.Linear(nhidden, norm_nc, bias=use_bias) def forward(self, x, feature): # Part 1. generate parameter-free normalized activations normalized = self.param_free_norm(x) # Part 2. produce scaling and bias conditioned on feature feature = feature.view(feature.size(0), -1) actv = self.mlp_shared(feature) gamma = self.mlp_gamma(actv) beta = self.mlp_beta(actv) # apply scale and bias gamma = gamma.view(*gamma.size()[:2], 1,1) beta = beta.view(*beta.size()[:2], 1,1) out = normalized * (1 + gamma) + beta return out class FineEncoder(nn.Module): """docstring for Encoder""" def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): super(FineEncoder, self).__init__() self.layers = layers self.first = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect) for i in range(layers): in_channels = min(ngf*(2**i), img_f) out_channels = min(ngf*(2**(i+1)), img_f) model = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect) setattr(self, 'down' + str(i), model) self.output_nc = out_channels def forward(self, x): x = self.first(x) out=[x] for i in range(self.layers): model = getattr(self, 'down'+str(i)) x = model(x) out.append(x) return out class FineDecoder(nn.Module): """docstring for FineDecoder""" def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): super(FineDecoder, self).__init__() self.layers = layers for i in range(layers)[::-1]: in_channels = min(ngf*(2**(i+1)), img_f) out_channels = min(ngf*(2**i), img_f) up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect) res = FineADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect) jump = Jump(out_channels, norm_layer, nonlinearity, use_spect) setattr(self, 'up' + str(i), up) setattr(self, 'res' + str(i), res) setattr(self, 'jump' + str(i), jump) self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'tanh') self.output_nc = out_channels def forward(self, x, z): out = x.pop() for i in range(self.layers)[::-1]: res_model = getattr(self, 'res' + str(i)) up_model = getattr(self, 'up' + str(i)) jump_model = getattr(self, 'jump' + str(i)) out = res_model(out, z) out = up_model(out) out = jump_model(x.pop()) + out out_image = self.final(out) return out_image class FirstBlock2d(nn.Module): """ Downsampling block for use in encoder. """ def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): super(FirstBlock2d, self).__init__() kwargs = {'kernel_size': 7, 'stride': 1, 'padding': 3} conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) if type(norm_layer) == type(None): self.model = nn.Sequential(conv, nonlinearity) else: self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity) def forward(self, x): out = self.model(x) return out class DownBlock2d(nn.Module): def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): super(DownBlock2d, self).__init__() kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) pool = nn.AvgPool2d(kernel_size=(2, 2)) if type(norm_layer) == type(None): self.model = nn.Sequential(conv, nonlinearity, pool) else: self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity, pool) def forward(self, x): out = self.model(x) return out class UpBlock2d(nn.Module): def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): super(UpBlock2d, self).__init__() kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) if type(norm_layer) == type(None): self.model = nn.Sequential(conv, nonlinearity) else: self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity) def forward(self, x): out = self.model(F.interpolate(x, scale_factor=2)) return out class FineADAINResBlocks(nn.Module): def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): super(FineADAINResBlocks, self).__init__() self.num_block = num_block for i in range(num_block): model = FineADAINResBlock2d(input_nc, feature_nc, norm_layer, nonlinearity, use_spect) setattr(self, 'res'+str(i), model) def forward(self, x, z): for i in range(self.num_block): model = getattr(self, 'res'+str(i)) x = model(x, z) return x class Jump(nn.Module): def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): super(Jump, self).__init__() kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} conv = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect) if type(norm_layer) == type(None): self.model = nn.Sequential(conv, nonlinearity) else: self.model = nn.Sequential(conv, norm_layer(input_nc), nonlinearity) def forward(self, x): out = self.model(x) return out class FineADAINResBlock2d(nn.Module): """ Define an Residual block for different types """ def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): super(FineADAINResBlock2d, self).__init__() kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} self.conv1 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect) self.conv2 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect) self.norm1 = ADAIN(input_nc, feature_nc) self.norm2 = ADAIN(input_nc, feature_nc) self.actvn = nonlinearity def forward(self, x, z): dx = self.actvn(self.norm1(self.conv1(x), z)) dx = self.norm2(self.conv2(x), z) out = dx + x return out class FinalBlock2d(nn.Module): """ Define the output layer """ def __init__(self, input_nc, output_nc, use_spect=False, tanh_or_sigmoid='tanh'): super(FinalBlock2d, self).__init__() kwargs = {'kernel_size': 7, 'stride': 1, 'padding':3} conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) if tanh_or_sigmoid == 'sigmoid': out_nonlinearity = nn.Sigmoid() else: out_nonlinearity = nn.Tanh() self.model = nn.Sequential(conv, out_nonlinearity) def forward(self, x): out = self.model(x) return out