import os import sys import cv2 import argparse from pathlib import Path import torch import numpy as np from data_loader import load_dir from facemodel import Face_3DMM from util import * from render_3dmm import Render_3DMM # torch.autograd.set_detect_anomaly(True) dir_path = os.path.dirname(os.path.realpath(__file__)) def set_requires_grad(tensor_list): for tensor in tensor_list: tensor.requires_grad = True parser = argparse.ArgumentParser() parser.add_argument( "--path", type=str, default="obama/ori_imgs", help="idname of target person" ) parser.add_argument("--img_h", type=int, default=512, help="image height") parser.add_argument("--img_w", type=int, default=512, help="image width") parser.add_argument("--frame_num", type=int, default=11000, help="image number") args = parser.parse_args() start_id = 0 end_id = args.frame_num lms, img_paths = load_dir(args.path, start_id, end_id) num_frames = lms.shape[0] h, w = args.img_h, args.img_w cxy = torch.tensor((w / 2.0, h / 2.0), dtype=torch.float).cuda() id_dim, exp_dim, tex_dim, point_num = 100, 79, 100, 34650 model_3dmm = Face_3DMM( os.path.join(dir_path, "3DMM"), id_dim, exp_dim, tex_dim, point_num ) # only use one image per 40 to do fit the focal length sel_ids = np.arange(0, num_frames, 40) sel_num = sel_ids.shape[0] arg_focal = 1600 arg_landis = 1e5 print(f'[INFO] fitting focal length...') # fit the focal length for focal in range(600, 1500, 100): id_para = lms.new_zeros((1, id_dim), requires_grad=True) exp_para = lms.new_zeros((sel_num, exp_dim), requires_grad=True) euler_angle = lms.new_zeros((sel_num, 3), requires_grad=True) trans = lms.new_zeros((sel_num, 3), requires_grad=True) trans.data[:, 2] -= 7 focal_length = lms.new_zeros(1, requires_grad=False) focal_length.data += focal set_requires_grad([id_para, exp_para, euler_angle, trans]) optimizer_idexp = torch.optim.Adam([id_para, exp_para], lr=0.1) optimizer_frame = torch.optim.Adam([euler_angle, trans], lr=0.1) for iter in range(2000): id_para_batch = id_para.expand(sel_num, -1) geometry = model_3dmm.get_3dlandmarks( id_para_batch, exp_para, euler_angle, trans, focal_length, cxy ) proj_geo = forward_transform(geometry, euler_angle, trans, focal_length, cxy) loss_lan = cal_lan_loss(proj_geo[:, :, :2], lms[sel_ids].detach()) loss = loss_lan optimizer_frame.zero_grad() loss.backward() optimizer_frame.step() # if iter % 100 == 0: # print(focal, 'pose', iter, loss.item()) for iter in range(2500): id_para_batch = id_para.expand(sel_num, -1) geometry = model_3dmm.get_3dlandmarks( id_para_batch, exp_para, euler_angle, trans, focal_length, cxy ) proj_geo = forward_transform(geometry, euler_angle, trans, focal_length, cxy) loss_lan = cal_lan_loss(proj_geo[:, :, :2], lms[sel_ids].detach()) loss_regid = torch.mean(id_para * id_para) loss_regexp = torch.mean(exp_para * exp_para) loss = loss_lan + loss_regid * 0.5 + loss_regexp * 0.4 optimizer_idexp.zero_grad() optimizer_frame.zero_grad() loss.backward() optimizer_idexp.step() optimizer_frame.step() # if iter % 100 == 0: # print(focal, 'poseidexp', iter, loss_lan.item(), loss_regid.item(), loss_regexp.item()) if iter % 1500 == 0 and iter >= 1500: for param_group in optimizer_idexp.param_groups: param_group["lr"] *= 0.2 for param_group in optimizer_frame.param_groups: param_group["lr"] *= 0.2 print(focal, loss_lan.item(), torch.mean(trans[:, 2]).item()) if loss_lan.item() < arg_landis: arg_landis = loss_lan.item() arg_focal = focal print("[INFO] find best focal:", arg_focal) print(f'[INFO] coarse fitting...') # for all frames, do a coarse fitting ??? id_para = lms.new_zeros((1, id_dim), requires_grad=True) exp_para = lms.new_zeros((num_frames, exp_dim), requires_grad=True) tex_para = lms.new_zeros( (1, tex_dim), requires_grad=True ) # not optimized in this block ??? euler_angle = lms.new_zeros((num_frames, 3), requires_grad=True) trans = lms.new_zeros((num_frames, 3), requires_grad=True) light_para = lms.new_zeros((num_frames, 27), requires_grad=True) trans.data[:, 2] -= 7 # ??? focal_length = lms.new_zeros(1, requires_grad=True) focal_length.data += arg_focal set_requires_grad([id_para, exp_para, tex_para, euler_angle, trans, light_para]) optimizer_idexp = torch.optim.Adam([id_para, exp_para], lr=0.1) optimizer_frame = torch.optim.Adam([euler_angle, trans], lr=1) for iter in range(1500): id_para_batch = id_para.expand(num_frames, -1) geometry = model_3dmm.get_3dlandmarks( id_para_batch, exp_para, euler_angle, trans, focal_length, cxy ) proj_geo = forward_transform(geometry, euler_angle, trans, focal_length, cxy) loss_lan = cal_lan_loss(proj_geo[:, :, :2], lms.detach()) loss = loss_lan optimizer_frame.zero_grad() loss.backward() optimizer_frame.step() if iter == 1000: for param_group in optimizer_frame.param_groups: param_group["lr"] = 0.1 # if iter % 100 == 0: # print('pose', iter, loss.item()) for param_group in optimizer_frame.param_groups: param_group["lr"] = 0.1 for iter in range(2000): id_para_batch = id_para.expand(num_frames, -1) geometry = model_3dmm.get_3dlandmarks( id_para_batch, exp_para, euler_angle, trans, focal_length, cxy ) proj_geo = forward_transform(geometry, euler_angle, trans, focal_length, cxy) loss_lan = cal_lan_loss(proj_geo[:, :, :2], lms.detach()) loss_regid = torch.mean(id_para * id_para) loss_regexp = torch.mean(exp_para * exp_para) loss = loss_lan + loss_regid * 0.5 + loss_regexp * 0.4 optimizer_idexp.zero_grad() optimizer_frame.zero_grad() loss.backward() optimizer_idexp.step() optimizer_frame.step() # if iter % 100 == 0: # print('poseidexp', iter, loss_lan.item(), loss_regid.item(), loss_regexp.item()) if iter % 1000 == 0 and iter >= 1000: for param_group in optimizer_idexp.param_groups: param_group["lr"] *= 0.2 for param_group in optimizer_frame.param_groups: param_group["lr"] *= 0.2 print(loss_lan.item(), torch.mean(trans[:, 2]).item()) print(f'[INFO] fitting light...') batch_size = 32 device_default = torch.device("cuda:0") device_render = torch.device("cuda:0") renderer = Render_3DMM(arg_focal, h, w, batch_size, device_render) sel_ids = np.arange(0, num_frames, int(num_frames / batch_size))[:batch_size] imgs = [] for sel_id in sel_ids: imgs.append(cv2.imread(img_paths[sel_id])[:, :, ::-1]) imgs = np.stack(imgs) sel_imgs = torch.as_tensor(imgs).cuda() sel_lms = lms[sel_ids] sel_light = light_para.new_zeros((batch_size, 27), requires_grad=True) set_requires_grad([sel_light]) optimizer_tl = torch.optim.Adam([tex_para, sel_light], lr=0.1) optimizer_id_frame = torch.optim.Adam([euler_angle, trans, exp_para, id_para], lr=0.01) for iter in range(71): sel_exp_para, sel_euler, sel_trans = ( exp_para[sel_ids], euler_angle[sel_ids], trans[sel_ids], ) sel_id_para = id_para.expand(batch_size, -1) geometry = model_3dmm.get_3dlandmarks( sel_id_para, sel_exp_para, sel_euler, sel_trans, focal_length, cxy ) proj_geo = forward_transform(geometry, sel_euler, sel_trans, focal_length, cxy) loss_lan = cal_lan_loss(proj_geo[:, :, :2], sel_lms.detach()) loss_regid = torch.mean(id_para * id_para) loss_regexp = torch.mean(sel_exp_para * sel_exp_para) sel_tex_para = tex_para.expand(batch_size, -1) sel_texture = model_3dmm.forward_tex(sel_tex_para) geometry = model_3dmm.forward_geo(sel_id_para, sel_exp_para) rott_geo = forward_rott(geometry, sel_euler, sel_trans) render_imgs = renderer( rott_geo.to(device_render), sel_texture.to(device_render), sel_light.to(device_render), ) render_imgs = render_imgs.to(device_default) mask = (render_imgs[:, :, :, 3]).detach() > 0.0 render_proj = sel_imgs.clone() render_proj[mask] = render_imgs[mask][..., :3].byte() loss_col = cal_col_loss(render_imgs[:, :, :, :3], sel_imgs.float(), mask) if iter > 50: loss = loss_col + loss_lan * 0.05 + loss_regid * 1.0 + loss_regexp * 0.8 else: loss = loss_col + loss_lan * 3 + loss_regid * 2.0 + loss_regexp * 1.0 optimizer_tl.zero_grad() optimizer_id_frame.zero_grad() loss.backward() optimizer_tl.step() optimizer_id_frame.step() if iter % 50 == 0 and iter > 0: for param_group in optimizer_id_frame.param_groups: param_group["lr"] *= 0.2 for param_group in optimizer_tl.param_groups: param_group["lr"] *= 0.2 # print(iter, loss_col.item(), loss_lan.item(), loss_regid.item(), loss_regexp.item()) light_mean = torch.mean(sel_light, 0).unsqueeze(0).repeat(num_frames, 1) light_para.data = light_mean exp_para = exp_para.detach() euler_angle = euler_angle.detach() trans = trans.detach() light_para = light_para.detach() print(f'[INFO] fine frame-wise fitting...') for i in range(int((num_frames - 1) / batch_size + 1)): if (i + 1) * batch_size > num_frames: start_n = num_frames - batch_size sel_ids = np.arange(num_frames - batch_size, num_frames) else: start_n = i * batch_size sel_ids = np.arange(i * batch_size, i * batch_size + batch_size) imgs = [] for sel_id in sel_ids: imgs.append(cv2.imread(img_paths[sel_id])[:, :, ::-1]) imgs = np.stack(imgs) sel_imgs = torch.as_tensor(imgs).cuda() sel_lms = lms[sel_ids] sel_exp_para = exp_para.new_zeros((batch_size, exp_dim), requires_grad=True) sel_exp_para.data = exp_para[sel_ids].clone() sel_euler = euler_angle.new_zeros((batch_size, 3), requires_grad=True) sel_euler.data = euler_angle[sel_ids].clone() sel_trans = trans.new_zeros((batch_size, 3), requires_grad=True) sel_trans.data = trans[sel_ids].clone() sel_light = light_para.new_zeros((batch_size, 27), requires_grad=True) sel_light.data = light_para[sel_ids].clone() set_requires_grad([sel_exp_para, sel_euler, sel_trans, sel_light]) optimizer_cur_batch = torch.optim.Adam( [sel_exp_para, sel_euler, sel_trans, sel_light], lr=0.005 ) sel_id_para = id_para.expand(batch_size, -1).detach() sel_tex_para = tex_para.expand(batch_size, -1).detach() pre_num = 5 if i > 0: pre_ids = np.arange(start_n - pre_num, start_n) for iter in range(50): geometry = model_3dmm.get_3dlandmarks( sel_id_para, sel_exp_para, sel_euler, sel_trans, focal_length, cxy ) proj_geo = forward_transform(geometry, sel_euler, sel_trans, focal_length, cxy) loss_lan = cal_lan_loss(proj_geo[:, :, :2], sel_lms.detach()) loss_regexp = torch.mean(sel_exp_para * sel_exp_para) sel_geometry = model_3dmm.forward_geo(sel_id_para, sel_exp_para) sel_texture = model_3dmm.forward_tex(sel_tex_para) geometry = model_3dmm.forward_geo(sel_id_para, sel_exp_para) rott_geo = forward_rott(geometry, sel_euler, sel_trans) render_imgs = renderer( rott_geo.to(device_render), sel_texture.to(device_render), sel_light.to(device_render), ) render_imgs = render_imgs.to(device_default) mask = (render_imgs[:, :, :, 3]).detach() > 0.0 loss_col = cal_col_loss(render_imgs[:, :, :, :3], sel_imgs.float(), mask) if i > 0: geometry_lap = model_3dmm.forward_geo_sub( id_para.expand(batch_size + pre_num, -1).detach(), torch.cat((exp_para[pre_ids].detach(), sel_exp_para)), model_3dmm.rigid_ids, ) rott_geo_lap = forward_rott( geometry_lap, torch.cat((euler_angle[pre_ids].detach(), sel_euler)), torch.cat((trans[pre_ids].detach(), sel_trans)), ) loss_lap = cal_lap_loss( [rott_geo_lap.reshape(rott_geo_lap.shape[0], -1).permute(1, 0)], [1.0] ) else: geometry_lap = model_3dmm.forward_geo_sub( id_para.expand(batch_size, -1).detach(), sel_exp_para, model_3dmm.rigid_ids, ) rott_geo_lap = forward_rott(geometry_lap, sel_euler, sel_trans) loss_lap = cal_lap_loss( [rott_geo_lap.reshape(rott_geo_lap.shape[0], -1).permute(1, 0)], [1.0] ) if iter > 30: loss = loss_col * 0.5 + loss_lan * 1.5 + loss_lap * 100000 + loss_regexp * 1.0 else: loss = loss_col * 0.5 + loss_lan * 8 + loss_lap * 100000 + loss_regexp * 1.0 optimizer_cur_batch.zero_grad() loss.backward() optimizer_cur_batch.step() # if iter % 10 == 0: # print( # i, # iter, # loss_col.item(), # loss_lan.item(), # loss_lap.item(), # loss_regexp.item(), # ) print(str(i) + " of " + str(int((num_frames - 1) / batch_size + 1)) + " done") render_proj = sel_imgs.clone() render_proj[mask] = render_imgs[mask][..., :3].byte() exp_para[sel_ids] = sel_exp_para.clone() euler_angle[sel_ids] = sel_euler.clone() trans[sel_ids] = sel_trans.clone() light_para[sel_ids] = sel_light.clone() torch.save( { "id": id_para.detach().cpu(), "exp": exp_para.detach().cpu(), "euler": euler_angle.detach().cpu(), "trans": trans.detach().cpu(), "focal": focal_length.detach().cpu(), }, os.path.join(os.path.dirname(args.path), "track_params.pt"), ) print("params saved")