import torch import torch.nn.functional as F from torch import nn from src.audio2pose_models.res_unet import ResUnet def class2onehot(idx, class_num): assert torch.max(idx).item() < class_num onehot = torch.zeros(idx.size(0), class_num).to(idx.device) onehot.scatter_(1, idx, 1) return onehot class CVAE(nn.Module): def __init__(self, cfg): super().__init__() encoder_layer_sizes = cfg.MODEL.CVAE.ENCODER_LAYER_SIZES decoder_layer_sizes = cfg.MODEL.CVAE.DECODER_LAYER_SIZES latent_size = cfg.MODEL.CVAE.LATENT_SIZE num_classes = cfg.DATASET.NUM_CLASSES audio_emb_in_size = cfg.MODEL.CVAE.AUDIO_EMB_IN_SIZE audio_emb_out_size = cfg.MODEL.CVAE.AUDIO_EMB_OUT_SIZE seq_len = cfg.MODEL.CVAE.SEQ_LEN self.latent_size = latent_size self.encoder = ENCODER(encoder_layer_sizes, latent_size, num_classes, audio_emb_in_size, audio_emb_out_size, seq_len) self.decoder = DECODER(decoder_layer_sizes, latent_size, num_classes, audio_emb_in_size, audio_emb_out_size, seq_len) def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mu + eps * std def forward(self, batch): batch = self.encoder(batch) mu = batch['mu'] logvar = batch['logvar'] z = self.reparameterize(mu, logvar) batch['z'] = z return self.decoder(batch) def test(self, batch): ''' class_id = batch['class'] z = torch.randn([class_id.size(0), self.latent_size]).to(class_id.device) batch['z'] = z ''' return self.decoder(batch) class ENCODER(nn.Module): def __init__(self, layer_sizes, latent_size, num_classes, audio_emb_in_size, audio_emb_out_size, seq_len): super().__init__() self.resunet = ResUnet() self.num_classes = num_classes self.seq_len = seq_len self.MLP = nn.Sequential() layer_sizes[0] += latent_size + seq_len*audio_emb_out_size + 6 for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): self.MLP.add_module( name="L{:d}".format(i), module=nn.Linear(in_size, out_size)) self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU()) self.linear_means = nn.Linear(layer_sizes[-1], latent_size) self.linear_logvar = nn.Linear(layer_sizes[-1], latent_size) self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size) self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size)) def forward(self, batch): class_id = batch['class'] pose_motion_gt = batch['pose_motion_gt'] #bs seq_len 6 ref = batch['ref'] #bs 6 bs = pose_motion_gt.shape[0] audio_in = batch['audio_emb'] # bs seq_len audio_emb_in_size #pose encode pose_emb = self.resunet(pose_motion_gt.unsqueeze(1)) #bs 1 seq_len 6 pose_emb = pose_emb.reshape(bs, -1) #bs seq_len*6 #audio mapping print(audio_in.shape) audio_out = self.linear_audio(audio_in) # bs seq_len audio_emb_out_size audio_out = audio_out.reshape(bs, -1) class_bias = self.classbias[class_id] #bs latent_size x_in = torch.cat([ref, pose_emb, audio_out, class_bias], dim=-1) #bs seq_len*(audio_emb_out_size+6)+latent_size x_out = self.MLP(x_in) mu = self.linear_means(x_out) logvar = self.linear_means(x_out) #bs latent_size batch.update({'mu':mu, 'logvar':logvar}) return batch class DECODER(nn.Module): def __init__(self, layer_sizes, latent_size, num_classes, audio_emb_in_size, audio_emb_out_size, seq_len): super().__init__() self.resunet = ResUnet() self.num_classes = num_classes self.seq_len = seq_len self.MLP = nn.Sequential() input_size = latent_size + seq_len*audio_emb_out_size + 6 for i, (in_size, out_size) in enumerate(zip([input_size]+layer_sizes[:-1], layer_sizes)): self.MLP.add_module( name="L{:d}".format(i), module=nn.Linear(in_size, out_size)) if i+1 < len(layer_sizes): self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU()) else: self.MLP.add_module(name="sigmoid", module=nn.Sigmoid()) self.pose_linear = nn.Linear(6, 6) self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size) self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size)) def forward(self, batch): z = batch['z'] #bs latent_size bs = z.shape[0] class_id = batch['class'] ref = batch['ref'] #bs 6 audio_in = batch['audio_emb'] # bs seq_len audio_emb_in_size #print('audio_in: ', audio_in[:, :, :10]) audio_out = self.linear_audio(audio_in) # bs seq_len audio_emb_out_size #print('audio_out: ', audio_out[:, :, :10]) audio_out = audio_out.reshape([bs, -1]) # bs seq_len*audio_emb_out_size class_bias = self.classbias[class_id] #bs latent_size z = z + class_bias x_in = torch.cat([ref, z, audio_out], dim=-1) x_out = self.MLP(x_in) # bs layer_sizes[-1] x_out = x_out.reshape((bs, self.seq_len, -1)) #print('x_out: ', x_out) pose_emb = self.resunet(x_out.unsqueeze(1)) #bs 1 seq_len 6 pose_motion_pred = self.pose_linear(pose_emb.squeeze(1)) #bs seq_len 6 batch.update({'pose_motion_pred':pose_motion_pred}) return batch