import torch import torch.nn.functional as F from torch import nn class Conv2d(nn.Module): def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act = True, *args, **kwargs): super().__init__(*args, **kwargs) self.conv_block = nn.Sequential( nn.Conv2d(cin, cout, kernel_size, stride, padding), nn.BatchNorm2d(cout) ) self.act = nn.ReLU() self.residual = residual self.use_act = use_act def forward(self, x): out = self.conv_block(x) if self.residual: out += x if self.use_act: return self.act(out) else: return out class SimpleWrapperV2(nn.Module): def __init__(self) -> None: super().__init__() self.audio_encoder = nn.Sequential( Conv2d(1, 32, kernel_size=3, stride=1, padding=1), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 128, kernel_size=3, stride=3, padding=1), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(256, 512, kernel_size=3, stride=1, padding=0), Conv2d(512, 512, kernel_size=1, stride=1, padding=0), ) #### load the pre-trained audio_encoder #self.audio_encoder = self.audio_encoder.to(device) ''' wav2lip_state_dict = torch.load('/apdcephfs_cq2/share_1290939/wenxuazhang/checkpoints/wav2lip.pth')['state_dict'] state_dict = self.audio_encoder.state_dict() for k,v in wav2lip_state_dict.items(): if 'audio_encoder' in k: print('init:', k) state_dict[k.replace('module.audio_encoder.', '')] = v self.audio_encoder.load_state_dict(state_dict) ''' self.mapping1 = nn.Linear(512+64+1, 64) #self.mapping2 = nn.Linear(30, 64) #nn.init.constant_(self.mapping1.weight, 0.) nn.init.constant_(self.mapping1.bias, 0.) def forward(self, x, ref, ratio): x = self.audio_encoder(x).view(x.size(0), -1) ref_reshape = ref.reshape(x.size(0), -1) ratio = ratio.reshape(x.size(0), -1) y = self.mapping1(torch.cat([x, ref_reshape, ratio], dim=1)) out = y.reshape(ref.shape[0], ref.shape[1], -1) #+ ref # resudial return out