import functools import torch import torch.nn as nn from .base_function import LayerNorm2d, ADAINHourglass, FineEncoder, FineDecoder def convert_flow_to_deformation(flow): r"""convert flow fields to deformations. Args: flow (tensor): Flow field obtained by the model Returns: deformation (tensor): The deformation used for warpping """ b,c,h,w = flow.shape flow_norm = 2 * torch.cat([flow[:,:1,...]/(w-1),flow[:,1:,...]/(h-1)], 1) grid = make_coordinate_grid(flow) deformation = grid + flow_norm.permute(0,2,3,1) return deformation def make_coordinate_grid(flow): r"""obtain coordinate grid with the same size as the flow filed. Args: flow (tensor): Flow field obtained by the model Returns: grid (tensor): The grid with the same size as the input flow """ b,c,h,w = flow.shape x = torch.arange(w).to(flow) y = torch.arange(h).to(flow) x = (2 * (x / (w - 1)) - 1) y = (2 * (y / (h - 1)) - 1) yy = y.view(-1, 1).repeat(1, w) xx = x.view(1, -1).repeat(h, 1) meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2) meshed = meshed.expand(b, -1, -1, -1) return meshed def warp_image(source_image, deformation): r"""warp the input image according to the deformation Args: source_image (tensor): source images to be warpped deformation (tensor): deformations used to warp the images; value in range (-1, 1) Returns: output (tensor): the warpped images """ _, h_old, w_old, _ = deformation.shape _, _, h, w = source_image.shape if h_old != h or w_old != w: deformation = deformation.permute(0, 3, 1, 2) deformation = torch.nn.functional.interpolate(deformation, size=(h, w), mode='bilinear') deformation = deformation.permute(0, 2, 3, 1) return torch.nn.functional.grid_sample(source_image, deformation) class FaceGenerator(nn.Module): def __init__( self, mapping_net, warpping_net, editing_net, common ): super(FaceGenerator, self).__init__() self.mapping_net = MappingNet(**mapping_net) self.warpping_net = WarpingNet(**warpping_net, **common) self.editing_net = EditingNet(**editing_net, **common) def forward( self, input_image, driving_source, stage=None ): if stage == 'warp': descriptor = self.mapping_net(driving_source) output = self.warpping_net(input_image, descriptor) else: descriptor = self.mapping_net(driving_source) output = self.warpping_net(input_image, descriptor) output['fake_image'] = self.editing_net(input_image, output['warp_image'], descriptor) return output class MappingNet(nn.Module): def __init__(self, coeff_nc, descriptor_nc, layer): super( MappingNet, self).__init__() self.layer = layer nonlinearity = nn.LeakyReLU(0.1) self.first = nn.Sequential( torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True)) for i in range(layer): net = nn.Sequential(nonlinearity, torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3)) setattr(self, 'encoder' + str(i), net) self.pooling = nn.AdaptiveAvgPool1d(1) self.output_nc = descriptor_nc def forward(self, input_3dmm): out = self.first(input_3dmm) for i in range(self.layer): model = getattr(self, 'encoder' + str(i)) out = model(out) + out[:,:,3:-3] out = self.pooling(out) return out class WarpingNet(nn.Module): def __init__( self, image_nc, descriptor_nc, base_nc, max_nc, encoder_layer, decoder_layer, use_spect ): super( WarpingNet, self).__init__() nonlinearity = nn.LeakyReLU(0.1) norm_layer = functools.partial(LayerNorm2d, affine=True) kwargs = {'nonlinearity':nonlinearity, 'use_spect':use_spect} self.descriptor_nc = descriptor_nc self.hourglass = ADAINHourglass(image_nc, self.descriptor_nc, base_nc, max_nc, encoder_layer, decoder_layer, **kwargs) self.flow_out = nn.Sequential(norm_layer(self.hourglass.output_nc), nonlinearity, nn.Conv2d(self.hourglass.output_nc, 2, kernel_size=7, stride=1, padding=3)) self.pool = nn.AdaptiveAvgPool2d(1) def forward(self, input_image, descriptor): final_output={} output = self.hourglass(input_image, descriptor) final_output['flow_field'] = self.flow_out(output) deformation = convert_flow_to_deformation(final_output['flow_field']) final_output['warp_image'] = warp_image(input_image, deformation) return final_output class EditingNet(nn.Module): def __init__( self, image_nc, descriptor_nc, layer, base_nc, max_nc, num_res_blocks, use_spect): super(EditingNet, self).__init__() nonlinearity = nn.LeakyReLU(0.1) norm_layer = functools.partial(LayerNorm2d, affine=True) kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect} self.descriptor_nc = descriptor_nc # encoder part self.encoder = FineEncoder(image_nc*2, base_nc, max_nc, layer, **kwargs) self.decoder = FineDecoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs) def forward(self, input_image, warp_image, descriptor): x = torch.cat([input_image, warp_image], 1) x = self.encoder(x) gen_image = self.decoder(x, descriptor) return gen_image