import torch import torch.nn as nn from src.audio2pose_models.networks import ResidualConv, Upsample class ResUnet(nn.Module): def __init__(self, channel=1, filters=[32, 64, 128, 256]): super(ResUnet, self).__init__() self.input_layer = nn.Sequential( nn.Conv2d(channel, filters[0], kernel_size=3, padding=1), nn.BatchNorm2d(filters[0]), nn.ReLU(), nn.Conv2d(filters[0], filters[0], kernel_size=3, padding=1), ) self.input_skip = nn.Sequential( nn.Conv2d(channel, filters[0], kernel_size=3, padding=1) ) self.residual_conv_1 = ResidualConv(filters[0], filters[1], stride=(2,1), padding=1) self.residual_conv_2 = ResidualConv(filters[1], filters[2], stride=(2,1), padding=1) self.bridge = ResidualConv(filters[2], filters[3], stride=(2,1), padding=1) self.upsample_1 = Upsample(filters[3], filters[3], kernel=(2,1), stride=(2,1)) self.up_residual_conv1 = ResidualConv(filters[3] + filters[2], filters[2], stride=1, padding=1) self.upsample_2 = Upsample(filters[2], filters[2], kernel=(2,1), stride=(2,1)) self.up_residual_conv2 = ResidualConv(filters[2] + filters[1], filters[1], stride=1, padding=1) self.upsample_3 = Upsample(filters[1], filters[1], kernel=(2,1), stride=(2,1)) self.up_residual_conv3 = ResidualConv(filters[1] + filters[0], filters[0], stride=1, padding=1) self.output_layer = nn.Sequential( nn.Conv2d(filters[0], 1, 1, 1), nn.Sigmoid(), ) def forward(self, x): # Encode x1 = self.input_layer(x) + self.input_skip(x) x2 = self.residual_conv_1(x1) x3 = self.residual_conv_2(x2) # Bridge x4 = self.bridge(x3) # Decode x4 = self.upsample_1(x4) x5 = torch.cat([x4, x3], dim=1) x6 = self.up_residual_conv1(x5) x6 = self.upsample_2(x6) x7 = torch.cat([x6, x2], dim=1) x8 = self.up_residual_conv2(x7) x8 = self.upsample_3(x8) x9 = torch.cat([x8, x1], dim=1) x10 = self.up_residual_conv3(x9) output = self.output_layer(x10) return output