import cv2 import numpy as np import torch import torch.nn as nn import torch.nn.functional as F def calculate_points(heatmaps): # change heatmaps to landmarks B, N, H, W = heatmaps.shape HW = H * W BN_range = np.arange(B * N) heatline = heatmaps.reshape(B, N, HW) indexes = np.argmax(heatline, axis=2) preds = np.stack((indexes % W, indexes // W), axis=2) preds = preds.astype(np.float, copy=False) inr = indexes.ravel() heatline = heatline.reshape(B * N, HW) x_up = heatline[BN_range, inr + 1] x_down = heatline[BN_range, inr - 1] # y_up = heatline[BN_range, inr + W] if any((inr + W) >= 4096): y_up = heatline[BN_range, 4095] else: y_up = heatline[BN_range, inr + W] if any((inr - W) <= 0): y_down = heatline[BN_range, 0] else: y_down = heatline[BN_range, inr - W] think_diff = np.sign(np.stack((x_up - x_down, y_up - y_down), axis=1)) think_diff *= .25 preds += think_diff.reshape(B, N, 2) preds += .5 return preds class AddCoordsTh(nn.Module): def __init__(self, x_dim=64, y_dim=64, with_r=False, with_boundary=False): super(AddCoordsTh, self).__init__() self.x_dim = x_dim self.y_dim = y_dim self.with_r = with_r self.with_boundary = with_boundary def forward(self, input_tensor, heatmap=None): """ input_tensor: (batch, c, x_dim, y_dim) """ batch_size_tensor = input_tensor.shape[0] xx_ones = torch.ones([1, self.y_dim], dtype=torch.int32, device=input_tensor.device) xx_ones = xx_ones.unsqueeze(-1) xx_range = torch.arange(self.x_dim, dtype=torch.int32, device=input_tensor.device).unsqueeze(0) xx_range = xx_range.unsqueeze(1) xx_channel = torch.matmul(xx_ones.float(), xx_range.float()) xx_channel = xx_channel.unsqueeze(-1) yy_ones = torch.ones([1, self.x_dim], dtype=torch.int32, device=input_tensor.device) yy_ones = yy_ones.unsqueeze(1) yy_range = torch.arange(self.y_dim, dtype=torch.int32, device=input_tensor.device).unsqueeze(0) yy_range = yy_range.unsqueeze(-1) yy_channel = torch.matmul(yy_range.float(), yy_ones.float()) yy_channel = yy_channel.unsqueeze(-1) xx_channel = xx_channel.permute(0, 3, 2, 1) yy_channel = yy_channel.permute(0, 3, 2, 1) xx_channel = xx_channel / (self.x_dim - 1) yy_channel = yy_channel / (self.y_dim - 1) xx_channel = xx_channel * 2 - 1 yy_channel = yy_channel * 2 - 1 xx_channel = xx_channel.repeat(batch_size_tensor, 1, 1, 1) yy_channel = yy_channel.repeat(batch_size_tensor, 1, 1, 1) if self.with_boundary and heatmap is not None: boundary_channel = torch.clamp(heatmap[:, -1:, :, :], 0.0, 1.0) zero_tensor = torch.zeros_like(xx_channel) xx_boundary_channel = torch.where(boundary_channel > 0.05, xx_channel, zero_tensor) yy_boundary_channel = torch.where(boundary_channel > 0.05, yy_channel, zero_tensor) if self.with_boundary and heatmap is not None: xx_boundary_channel = xx_boundary_channel.to(input_tensor.device) yy_boundary_channel = yy_boundary_channel.to(input_tensor.device) ret = torch.cat([input_tensor, xx_channel, yy_channel], dim=1) if self.with_r: rr = torch.sqrt(torch.pow(xx_channel, 2) + torch.pow(yy_channel, 2)) rr = rr / torch.max(rr) ret = torch.cat([ret, rr], dim=1) if self.with_boundary and heatmap is not None: ret = torch.cat([ret, xx_boundary_channel, yy_boundary_channel], dim=1) return ret class CoordConvTh(nn.Module): """CoordConv layer as in the paper.""" def __init__(self, x_dim, y_dim, with_r, with_boundary, in_channels, first_one=False, *args, **kwargs): super(CoordConvTh, self).__init__() self.addcoords = AddCoordsTh(x_dim=x_dim, y_dim=y_dim, with_r=with_r, with_boundary=with_boundary) in_channels += 2 if with_r: in_channels += 1 if with_boundary and not first_one: in_channels += 2 self.conv = nn.Conv2d(in_channels=in_channels, *args, **kwargs) def forward(self, input_tensor, heatmap=None): ret = self.addcoords(input_tensor, heatmap) last_channel = ret[:, -2:, :, :] ret = self.conv(ret) return ret, last_channel def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False, dilation=1): '3x3 convolution with padding' return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=strd, padding=padding, bias=bias, dilation=dilation) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) # self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) # self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.conv2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ConvBlock(nn.Module): def __init__(self, in_planes, out_planes): super(ConvBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = conv3x3(in_planes, int(out_planes / 2)) self.bn2 = nn.BatchNorm2d(int(out_planes / 2)) self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4), padding=1, dilation=1) self.bn3 = nn.BatchNorm2d(int(out_planes / 4)) self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4), padding=1, dilation=1) if in_planes != out_planes: self.downsample = nn.Sequential( nn.BatchNorm2d(in_planes), nn.ReLU(True), nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, bias=False), ) else: self.downsample = None def forward(self, x): residual = x out1 = self.bn1(x) out1 = F.relu(out1, True) out1 = self.conv1(out1) out2 = self.bn2(out1) out2 = F.relu(out2, True) out2 = self.conv2(out2) out3 = self.bn3(out2) out3 = F.relu(out3, True) out3 = self.conv3(out3) out3 = torch.cat((out1, out2, out3), 1) if self.downsample is not None: residual = self.downsample(residual) out3 += residual return out3 class HourGlass(nn.Module): def __init__(self, num_modules, depth, num_features, first_one=False): super(HourGlass, self).__init__() self.num_modules = num_modules self.depth = depth self.features = num_features self.coordconv = CoordConvTh( x_dim=64, y_dim=64, with_r=True, with_boundary=True, in_channels=256, first_one=first_one, out_channels=256, kernel_size=1, stride=1, padding=0) self._generate_network(self.depth) def _generate_network(self, level): self.add_module('b1_' + str(level), ConvBlock(256, 256)) self.add_module('b2_' + str(level), ConvBlock(256, 256)) if level > 1: self._generate_network(level - 1) else: self.add_module('b2_plus_' + str(level), ConvBlock(256, 256)) self.add_module('b3_' + str(level), ConvBlock(256, 256)) def _forward(self, level, inp): # Upper branch up1 = inp up1 = self._modules['b1_' + str(level)](up1) # Lower branch low1 = F.avg_pool2d(inp, 2, stride=2) low1 = self._modules['b2_' + str(level)](low1) if level > 1: low2 = self._forward(level - 1, low1) else: low2 = low1 low2 = self._modules['b2_plus_' + str(level)](low2) low3 = low2 low3 = self._modules['b3_' + str(level)](low3) up2 = F.interpolate(low3, scale_factor=2, mode='nearest') return up1 + up2 def forward(self, x, heatmap): x, last_channel = self.coordconv(x, heatmap) return self._forward(self.depth, x), last_channel class FAN(nn.Module): def __init__(self, num_modules=1, end_relu=False, gray_scale=False, num_landmarks=68, device='cuda'): super(FAN, self).__init__() self.device = device self.num_modules = num_modules self.gray_scale = gray_scale self.end_relu = end_relu self.num_landmarks = num_landmarks # Base part if self.gray_scale: self.conv1 = CoordConvTh( x_dim=256, y_dim=256, with_r=True, with_boundary=False, in_channels=3, out_channels=64, kernel_size=7, stride=2, padding=3) else: self.conv1 = CoordConvTh( x_dim=256, y_dim=256, with_r=True, with_boundary=False, in_channels=3, out_channels=64, kernel_size=7, stride=2, padding=3) self.bn1 = nn.BatchNorm2d(64) self.conv2 = ConvBlock(64, 128) self.conv3 = ConvBlock(128, 128) self.conv4 = ConvBlock(128, 256) # Stacking part for hg_module in range(self.num_modules): if hg_module == 0: first_one = True else: first_one = False self.add_module('m' + str(hg_module), HourGlass(1, 4, 256, first_one)) self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256)) self.add_module('conv_last' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) self.add_module('l' + str(hg_module), nn.Conv2d(256, num_landmarks + 1, kernel_size=1, stride=1, padding=0)) if hg_module < self.num_modules - 1: self.add_module('bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) self.add_module('al' + str(hg_module), nn.Conv2d(num_landmarks + 1, 256, kernel_size=1, stride=1, padding=0)) def forward(self, x): x, _ = self.conv1(x) x = F.relu(self.bn1(x), True) # x = F.relu(self.bn1(self.conv1(x)), True) x = F.avg_pool2d(self.conv2(x), 2, stride=2) x = self.conv3(x) x = self.conv4(x) previous = x outputs = [] boundary_channels = [] tmp_out = None for i in range(self.num_modules): hg, boundary_channel = self._modules['m' + str(i)](previous, tmp_out) ll = hg ll = self._modules['top_m_' + str(i)](ll) ll = F.relu(self._modules['bn_end' + str(i)](self._modules['conv_last' + str(i)](ll)), True) # Predict heatmaps tmp_out = self._modules['l' + str(i)](ll) if self.end_relu: tmp_out = F.relu(tmp_out) # HACK: Added relu outputs.append(tmp_out) boundary_channels.append(boundary_channel) if i < self.num_modules - 1: ll = self._modules['bl' + str(i)](ll) tmp_out_ = self._modules['al' + str(i)](tmp_out) previous = previous + ll + tmp_out_ return outputs, boundary_channels def get_landmarks(self, img): H, W, _ = img.shape offset = W / 64, H / 64, 0, 0 img = cv2.resize(img, (256, 256)) inp = img[..., ::-1] inp = torch.from_numpy(np.ascontiguousarray(inp.transpose((2, 0, 1)))).float() inp = inp.to(self.device) inp.div_(255.0).unsqueeze_(0) outputs, _ = self.forward(inp) out = outputs[-1][:, :-1, :, :] heatmaps = out.detach().cpu().numpy() pred = calculate_points(heatmaps).reshape(-1, 2) pred *= offset[:2] pred += offset[-2:] return pred