import numpy as np import torch import torch.nn as nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.cuda.amp import custom_bwd, custom_fwd try: import _freqencoder as _backend except ImportError: from .backend import _backend class _freq_encoder(Function): @staticmethod @custom_fwd(cast_inputs=torch.float32) # force float32 for better precision def forward(ctx, inputs, degree, output_dim): # inputs: [B, input_dim], float # RETURN: [B, F], float if not inputs.is_cuda: inputs = inputs.cuda() inputs = inputs.contiguous() B, input_dim = inputs.shape # batch size, coord dim outputs = torch.empty(B, output_dim, dtype=inputs.dtype, device=inputs.device) _backend.freq_encode_forward(inputs, B, input_dim, degree, output_dim, outputs) ctx.save_for_backward(inputs, outputs) ctx.dims = [B, input_dim, degree, output_dim] return outputs @staticmethod #@once_differentiable @custom_bwd def backward(ctx, grad): # grad: [B, C * C] grad = grad.contiguous() inputs, outputs = ctx.saved_tensors B, input_dim, degree, output_dim = ctx.dims grad_inputs = torch.zeros_like(inputs) _backend.freq_encode_backward(grad, outputs, B, input_dim, degree, output_dim, grad_inputs) return grad_inputs, None, None freq_encode = _freq_encoder.apply class FreqEncoder(nn.Module): def __init__(self, input_dim=3, degree=4): super().__init__() self.input_dim = input_dim self.degree = degree self.output_dim = input_dim + input_dim * 2 * degree def __repr__(self): return f"FreqEncoder: input_dim={self.input_dim} degree={self.degree} output_dim={self.output_dim}" def forward(self, inputs, **kwargs): # inputs: [..., input_dim] # return: [..., ] prefix_shape = list(inputs.shape[:-1]) inputs = inputs.reshape(-1, self.input_dim) outputs = freq_encode(inputs, self.degree, self.output_dim) outputs = outputs.reshape(prefix_shape + [self.output_dim]) return outputs