import logging import os import time from typing import List import torch from eval import verification from utils.utils_logging import AverageMeter class CallBackVerification(object): def __init__(self, frequent, rank, val_targets, rec_prefix, image_size=(112, 112)): self.frequent: int = frequent self.rank: int = rank self.highest_acc: float = 0.0 self.highest_acc_list: List[float] = [0.0] * len(val_targets) self.ver_list: List[object] = [] self.ver_name_list: List[str] = [] if self.rank is 0: self.init_dataset(val_targets=val_targets, data_dir=rec_prefix, image_size=image_size) def ver_test(self, backbone: torch.nn.Module, global_step: int): results = [] for i in range(len(self.ver_list)): acc1, std1, acc2, std2, xnorm, embeddings_list = verification.test( self.ver_list[i], backbone, 10, 10) logging.info('[%s][%d]XNorm: %f' % (self.ver_name_list[i], global_step, xnorm)) logging.info('[%s][%d]Accuracy-Flip: %1.5f+-%1.5f' % (self.ver_name_list[i], global_step, acc2, std2)) if acc2 > self.highest_acc_list[i]: self.highest_acc_list[i] = acc2 logging.info( '[%s][%d]Accuracy-Highest: %1.5f' % (self.ver_name_list[i], global_step, self.highest_acc_list[i])) results.append(acc2) def init_dataset(self, val_targets, data_dir, image_size): for name in val_targets: path = os.path.join(data_dir, name + ".bin") if os.path.exists(path): data_set = verification.load_bin(path, image_size) self.ver_list.append(data_set) self.ver_name_list.append(name) def __call__(self, num_update, backbone: torch.nn.Module): if self.rank is 0 and num_update > 0 and num_update % self.frequent == 0: backbone.eval() self.ver_test(backbone, num_update) backbone.train() class CallBackLogging(object): def __init__(self, frequent, rank, total_step, batch_size, world_size, writer=None): self.frequent: int = frequent self.rank: int = rank self.time_start = time.time() self.total_step: int = total_step self.batch_size: int = batch_size self.world_size: int = world_size self.writer = writer self.init = False self.tic = 0 def __call__(self, global_step: int, loss: AverageMeter, epoch: int, fp16: bool, learning_rate: float, grad_scaler: torch.cuda.amp.GradScaler): if self.rank == 0 and global_step > 0 and global_step % self.frequent == 0: if self.init: try: speed: float = self.frequent * self.batch_size / (time.time() - self.tic) speed_total = speed * self.world_size except ZeroDivisionError: speed_total = float('inf') time_now = (time.time() - self.time_start) / 3600 time_total = time_now / ((global_step + 1) / self.total_step) time_for_end = time_total - time_now if self.writer is not None: self.writer.add_scalar('time_for_end', time_for_end, global_step) self.writer.add_scalar('learning_rate', learning_rate, global_step) self.writer.add_scalar('loss', loss.avg, global_step) if fp16: msg = "Speed %.2f samples/sec Loss %.4f LearningRate %.4f Epoch: %d Global Step: %d " \ "Fp16 Grad Scale: %2.f Required: %1.f hours" % ( speed_total, loss.avg, learning_rate, epoch, global_step, grad_scaler.get_scale(), time_for_end ) else: msg = "Speed %.2f samples/sec Loss %.4f LearningRate %.4f Epoch: %d Global Step: %d " \ "Required: %1.f hours" % ( speed_total, loss.avg, learning_rate, epoch, global_step, time_for_end ) logging.info(msg) loss.reset() self.tic = time.time() else: self.init = True self.tic = time.time() class CallBackModelCheckpoint(object): def __init__(self, rank, output="./"): self.rank: int = rank self.output: str = output def __call__(self, global_step, backbone, partial_fc, ): if global_step > 100 and self.rank == 0: path_module = os.path.join(self.output, "backbone.pth") torch.save(backbone.module.state_dict(), path_module) logging.info("Pytorch Model Saved in '{}'".format(path_module)) if global_step > 100 and partial_fc is not None: partial_fc.save_params()