Spaces:
Sleeping
Sleeping
import sys | |
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.autograd import Function | |
from torch.nn.utils.spectral_norm import spectral_norm as SpectralNorm | |
class LayerNorm2d(nn.Module): | |
def __init__(self, n_out, affine=True): | |
super(LayerNorm2d, self).__init__() | |
self.n_out = n_out | |
self.affine = affine | |
if self.affine: | |
self.weight = nn.Parameter(torch.ones(n_out, 1, 1)) | |
self.bias = nn.Parameter(torch.zeros(n_out, 1, 1)) | |
def forward(self, x): | |
normalized_shape = x.size()[1:] | |
if self.affine: | |
return F.layer_norm(x, normalized_shape, \ | |
self.weight.expand(normalized_shape), | |
self.bias.expand(normalized_shape)) | |
else: | |
return F.layer_norm(x, normalized_shape) | |
class ADAINHourglass(nn.Module): | |
def __init__(self, image_nc, pose_nc, ngf, img_f, encoder_layers, decoder_layers, nonlinearity, use_spect): | |
super(ADAINHourglass, self).__init__() | |
self.encoder = ADAINEncoder(image_nc, pose_nc, ngf, img_f, encoder_layers, nonlinearity, use_spect) | |
self.decoder = ADAINDecoder(pose_nc, ngf, img_f, encoder_layers, decoder_layers, True, nonlinearity, use_spect) | |
self.output_nc = self.decoder.output_nc | |
def forward(self, x, z): | |
return self.decoder(self.encoder(x, z), z) | |
class ADAINEncoder(nn.Module): | |
def __init__(self, image_nc, pose_nc, ngf, img_f, layers, nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(ADAINEncoder, self).__init__() | |
self.layers = layers | |
self.input_layer = nn.Conv2d(image_nc, ngf, kernel_size=7, stride=1, padding=3) | |
for i in range(layers): | |
in_channels = min(ngf * (2**i), img_f) | |
out_channels = min(ngf *(2**(i+1)), img_f) | |
model = ADAINEncoderBlock(in_channels, out_channels, pose_nc, nonlinearity, use_spect) | |
setattr(self, 'encoder' + str(i), model) | |
self.output_nc = out_channels | |
def forward(self, x, z): | |
out = self.input_layer(x) | |
out_list = [out] | |
for i in range(self.layers): | |
model = getattr(self, 'encoder' + str(i)) | |
out = model(out, z) | |
out_list.append(out) | |
return out_list | |
class ADAINDecoder(nn.Module): | |
"""docstring for ADAINDecoder""" | |
def __init__(self, pose_nc, ngf, img_f, encoder_layers, decoder_layers, skip_connect=True, | |
nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(ADAINDecoder, self).__init__() | |
self.encoder_layers = encoder_layers | |
self.decoder_layers = decoder_layers | |
self.skip_connect = skip_connect | |
use_transpose = True | |
for i in range(encoder_layers-decoder_layers, encoder_layers)[::-1]: | |
in_channels = min(ngf * (2**(i+1)), img_f) | |
in_channels = in_channels*2 if i != (encoder_layers-1) and self.skip_connect else in_channels | |
out_channels = min(ngf * (2**i), img_f) | |
model = ADAINDecoderBlock(in_channels, out_channels, out_channels, pose_nc, use_transpose, nonlinearity, use_spect) | |
setattr(self, 'decoder' + str(i), model) | |
self.output_nc = out_channels*2 if self.skip_connect else out_channels | |
def forward(self, x, z): | |
out = x.pop() if self.skip_connect else x | |
for i in range(self.encoder_layers-self.decoder_layers, self.encoder_layers)[::-1]: | |
model = getattr(self, 'decoder' + str(i)) | |
out = model(out, z) | |
out = torch.cat([out, x.pop()], 1) if self.skip_connect else out | |
return out | |
class ADAINEncoderBlock(nn.Module): | |
def __init__(self, input_nc, output_nc, feature_nc, nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(ADAINEncoderBlock, self).__init__() | |
kwargs_down = {'kernel_size': 4, 'stride': 2, 'padding': 1} | |
kwargs_fine = {'kernel_size': 3, 'stride': 1, 'padding': 1} | |
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_down), use_spect) | |
self.conv_1 = spectral_norm(nn.Conv2d(output_nc, output_nc, **kwargs_fine), use_spect) | |
self.norm_0 = ADAIN(input_nc, feature_nc) | |
self.norm_1 = ADAIN(output_nc, feature_nc) | |
self.actvn = nonlinearity | |
def forward(self, x, z): | |
x = self.conv_0(self.actvn(self.norm_0(x, z))) | |
x = self.conv_1(self.actvn(self.norm_1(x, z))) | |
return x | |
class ADAINDecoderBlock(nn.Module): | |
def __init__(self, input_nc, output_nc, hidden_nc, feature_nc, use_transpose=True, nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(ADAINDecoderBlock, self).__init__() | |
# Attributes | |
self.actvn = nonlinearity | |
hidden_nc = min(input_nc, output_nc) if hidden_nc is None else hidden_nc | |
kwargs_fine = {'kernel_size':3, 'stride':1, 'padding':1} | |
if use_transpose: | |
kwargs_up = {'kernel_size':3, 'stride':2, 'padding':1, 'output_padding':1} | |
else: | |
kwargs_up = {'kernel_size':3, 'stride':1, 'padding':1} | |
# create conv layers | |
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, hidden_nc, **kwargs_fine), use_spect) | |
if use_transpose: | |
self.conv_1 = spectral_norm(nn.ConvTranspose2d(hidden_nc, output_nc, **kwargs_up), use_spect) | |
self.conv_s = spectral_norm(nn.ConvTranspose2d(input_nc, output_nc, **kwargs_up), use_spect) | |
else: | |
self.conv_1 = nn.Sequential(spectral_norm(nn.Conv2d(hidden_nc, output_nc, **kwargs_up), use_spect), | |
nn.Upsample(scale_factor=2)) | |
self.conv_s = nn.Sequential(spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_up), use_spect), | |
nn.Upsample(scale_factor=2)) | |
# define normalization layers | |
self.norm_0 = ADAIN(input_nc, feature_nc) | |
self.norm_1 = ADAIN(hidden_nc, feature_nc) | |
self.norm_s = ADAIN(input_nc, feature_nc) | |
def forward(self, x, z): | |
x_s = self.shortcut(x, z) | |
dx = self.conv_0(self.actvn(self.norm_0(x, z))) | |
dx = self.conv_1(self.actvn(self.norm_1(dx, z))) | |
out = x_s + dx | |
return out | |
def shortcut(self, x, z): | |
x_s = self.conv_s(self.actvn(self.norm_s(x, z))) | |
return x_s | |
def spectral_norm(module, use_spect=True): | |
"""use spectral normal layer to stable the training process""" | |
if use_spect: | |
return SpectralNorm(module) | |
else: | |
return module | |
class ADAIN(nn.Module): | |
def __init__(self, norm_nc, feature_nc): | |
super().__init__() | |
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) | |
nhidden = 128 | |
use_bias=True | |
self.mlp_shared = nn.Sequential( | |
nn.Linear(feature_nc, nhidden, bias=use_bias), | |
nn.ReLU() | |
) | |
self.mlp_gamma = nn.Linear(nhidden, norm_nc, bias=use_bias) | |
self.mlp_beta = nn.Linear(nhidden, norm_nc, bias=use_bias) | |
def forward(self, x, feature): | |
# Part 1. generate parameter-free normalized activations | |
normalized = self.param_free_norm(x) | |
# Part 2. produce scaling and bias conditioned on feature | |
feature = feature.view(feature.size(0), -1) | |
actv = self.mlp_shared(feature) | |
gamma = self.mlp_gamma(actv) | |
beta = self.mlp_beta(actv) | |
# apply scale and bias | |
gamma = gamma.view(*gamma.size()[:2], 1,1) | |
beta = beta.view(*beta.size()[:2], 1,1) | |
out = normalized * (1 + gamma) + beta | |
return out | |
class FineEncoder(nn.Module): | |
"""docstring for Encoder""" | |
def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(FineEncoder, self).__init__() | |
self.layers = layers | |
self.first = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect) | |
for i in range(layers): | |
in_channels = min(ngf*(2**i), img_f) | |
out_channels = min(ngf*(2**(i+1)), img_f) | |
model = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect) | |
setattr(self, 'down' + str(i), model) | |
self.output_nc = out_channels | |
def forward(self, x): | |
x = self.first(x) | |
out=[x] | |
for i in range(self.layers): | |
model = getattr(self, 'down'+str(i)) | |
x = model(x) | |
out.append(x) | |
return out | |
class FineDecoder(nn.Module): | |
"""docstring for FineDecoder""" | |
def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(FineDecoder, self).__init__() | |
self.layers = layers | |
for i in range(layers)[::-1]: | |
in_channels = min(ngf*(2**(i+1)), img_f) | |
out_channels = min(ngf*(2**i), img_f) | |
up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect) | |
res = FineADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect) | |
jump = Jump(out_channels, norm_layer, nonlinearity, use_spect) | |
setattr(self, 'up' + str(i), up) | |
setattr(self, 'res' + str(i), res) | |
setattr(self, 'jump' + str(i), jump) | |
self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'tanh') | |
self.output_nc = out_channels | |
def forward(self, x, z): | |
out = x.pop() | |
for i in range(self.layers)[::-1]: | |
res_model = getattr(self, 'res' + str(i)) | |
up_model = getattr(self, 'up' + str(i)) | |
jump_model = getattr(self, 'jump' + str(i)) | |
out = res_model(out, z) | |
out = up_model(out) | |
out = jump_model(x.pop()) + out | |
out_image = self.final(out) | |
return out_image | |
class FirstBlock2d(nn.Module): | |
""" | |
Downsampling block for use in encoder. | |
""" | |
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(FirstBlock2d, self).__init__() | |
kwargs = {'kernel_size': 7, 'stride': 1, 'padding': 3} | |
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) | |
if type(norm_layer) == type(None): | |
self.model = nn.Sequential(conv, nonlinearity) | |
else: | |
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity) | |
def forward(self, x): | |
out = self.model(x) | |
return out | |
class DownBlock2d(nn.Module): | |
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(DownBlock2d, self).__init__() | |
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} | |
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) | |
pool = nn.AvgPool2d(kernel_size=(2, 2)) | |
if type(norm_layer) == type(None): | |
self.model = nn.Sequential(conv, nonlinearity, pool) | |
else: | |
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity, pool) | |
def forward(self, x): | |
out = self.model(x) | |
return out | |
class UpBlock2d(nn.Module): | |
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(UpBlock2d, self).__init__() | |
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} | |
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) | |
if type(norm_layer) == type(None): | |
self.model = nn.Sequential(conv, nonlinearity) | |
else: | |
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity) | |
def forward(self, x): | |
out = self.model(F.interpolate(x, scale_factor=2)) | |
return out | |
class FineADAINResBlocks(nn.Module): | |
def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(FineADAINResBlocks, self).__init__() | |
self.num_block = num_block | |
for i in range(num_block): | |
model = FineADAINResBlock2d(input_nc, feature_nc, norm_layer, nonlinearity, use_spect) | |
setattr(self, 'res'+str(i), model) | |
def forward(self, x, z): | |
for i in range(self.num_block): | |
model = getattr(self, 'res'+str(i)) | |
x = model(x, z) | |
return x | |
class Jump(nn.Module): | |
def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(Jump, self).__init__() | |
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} | |
conv = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect) | |
if type(norm_layer) == type(None): | |
self.model = nn.Sequential(conv, nonlinearity) | |
else: | |
self.model = nn.Sequential(conv, norm_layer(input_nc), nonlinearity) | |
def forward(self, x): | |
out = self.model(x) | |
return out | |
class FineADAINResBlock2d(nn.Module): | |
""" | |
Define an Residual block for different types | |
""" | |
def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): | |
super(FineADAINResBlock2d, self).__init__() | |
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} | |
self.conv1 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect) | |
self.conv2 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect) | |
self.norm1 = ADAIN(input_nc, feature_nc) | |
self.norm2 = ADAIN(input_nc, feature_nc) | |
self.actvn = nonlinearity | |
def forward(self, x, z): | |
dx = self.actvn(self.norm1(self.conv1(x), z)) | |
dx = self.norm2(self.conv2(x), z) | |
out = dx + x | |
return out | |
class FinalBlock2d(nn.Module): | |
""" | |
Define the output layer | |
""" | |
def __init__(self, input_nc, output_nc, use_spect=False, tanh_or_sigmoid='tanh'): | |
super(FinalBlock2d, self).__init__() | |
kwargs = {'kernel_size': 7, 'stride': 1, 'padding':3} | |
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) | |
if tanh_or_sigmoid == 'sigmoid': | |
out_nonlinearity = nn.Sigmoid() | |
else: | |
out_nonlinearity = nn.Tanh() | |
self.model = nn.Sequential(conv, out_nonlinearity) | |
def forward(self, x): | |
out = self.model(x) | |
return out |