Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,9 @@ import spaces
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import torch
|
|
|
|
|
|
|
8 |
from PIL import Image
|
9 |
from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL, DPMSolverMultistepScheduler
|
10 |
from huggingface_hub import hf_hub_download, InferenceClient
|
@@ -29,6 +32,11 @@ To optimize image results:
|
|
29 |
- **Increase the number of steps** for enhanced edits.
|
30 |
"""
|
31 |
|
|
|
|
|
|
|
|
|
|
|
32 |
def set_timesteps_patched(self, num_inference_steps: int, device = None):
|
33 |
self.num_inference_steps = num_inference_steps
|
34 |
|
@@ -91,8 +99,9 @@ def king(type ,
|
|
91 |
num_inference_steps=steps,
|
92 |
image=output_image,
|
93 |
generator=generator,
|
94 |
-
).images
|
95 |
-
|
|
|
96 |
else :
|
97 |
if randomize_seed:
|
98 |
seed = random.randint(0, 999999)
|
@@ -108,7 +117,7 @@ def king(type ,
|
|
108 |
num_inference_steps = int(steps/2.5),
|
109 |
width = width, height = height,
|
110 |
generator = generator,
|
111 |
-
).images
|
112 |
else:
|
113 |
image = pipe_fast( prompt = instruction,
|
114 |
negative_prompt=negative_prompt,
|
@@ -123,8 +132,9 @@ def king(type ,
|
|
123 |
guidance_scale = 7.5,
|
124 |
num_inference_steps= steps,
|
125 |
image=image, generator=generator,
|
126 |
-
).images
|
127 |
-
|
|
|
128 |
|
129 |
client = InferenceClient()
|
130 |
# Prompt classifier
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
+
import uuid
|
11 |
from PIL import Image
|
12 |
from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL, DPMSolverMultistepScheduler
|
13 |
from huggingface_hub import hf_hub_download, InferenceClient
|
|
|
32 |
- **Increase the number of steps** for enhanced edits.
|
33 |
"""
|
34 |
|
35 |
+
def save_image(img):
|
36 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
37 |
+
img.save(unique_name)
|
38 |
+
return unique_name
|
39 |
+
|
40 |
def set_timesteps_patched(self, num_inference_steps: int, device = None):
|
41 |
self.num_inference_steps = num_inference_steps
|
42 |
|
|
|
99 |
num_inference_steps=steps,
|
100 |
image=output_image,
|
101 |
generator=generator,
|
102 |
+
).images
|
103 |
+
image_paths = [save_image(img) for img in refine][0]
|
104 |
+
return seed, image_paths
|
105 |
else :
|
106 |
if randomize_seed:
|
107 |
seed = random.randint(0, 999999)
|
|
|
117 |
num_inference_steps = int(steps/2.5),
|
118 |
width = width, height = height,
|
119 |
generator = generator,
|
120 |
+
).images
|
121 |
else:
|
122 |
image = pipe_fast( prompt = instruction,
|
123 |
negative_prompt=negative_prompt,
|
|
|
132 |
guidance_scale = 7.5,
|
133 |
num_inference_steps= steps,
|
134 |
image=image, generator=generator,
|
135 |
+
).images
|
136 |
+
image_paths = [save_image(img) for img in refine][0]
|
137 |
+
return seed, image_paths
|
138 |
|
139 |
client = InferenceClient()
|
140 |
# Prompt classifier
|