Spaces:
Sleeping
Sleeping
umuthopeyildirim
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -79,6 +79,40 @@ def predict(message, history):
|
|
79 |
yield partial_message
|
80 |
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
def generate_text(prompt, tokenizer, model):
|
83 |
# Tokenize the input
|
84 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
@@ -127,7 +161,7 @@ with gr.Blocks(css=css) as demo:
|
|
127 |
# with gr.Tab("E-Commerce"):
|
128 |
# e_commerce_interface()
|
129 |
with gr.Tab("OpenBB"):
|
130 |
-
gr.ChatInterface(
|
131 |
examples_openbb[0], examples_openbb[1], examples_openbb[2], examples_openbb[3]])
|
132 |
|
133 |
|
|
|
79 |
yield partial_message
|
80 |
|
81 |
|
82 |
+
def predict2(message, history):
|
83 |
+
|
84 |
+
history_transformer_format = history + [[message, ""]]
|
85 |
+
stop = StopOnTokens()
|
86 |
+
|
87 |
+
messages = "".join(["".join(["\nuser :"+item[0], "\nbot:"+item[1]]) # curr_system_message +
|
88 |
+
for item in history_transformer_format])
|
89 |
+
|
90 |
+
print(messages)
|
91 |
+
|
92 |
+
model_inputs = tokenizer([messages], return_tensors="pt")
|
93 |
+
streamer = TextIteratorStreamer(
|
94 |
+
tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
95 |
+
generate_kwargs = dict(
|
96 |
+
model_inputs,
|
97 |
+
streamer=streamer,
|
98 |
+
max_new_tokens=1024,
|
99 |
+
do_sample=True,
|
100 |
+
top_p=0.95,
|
101 |
+
top_k=1000,
|
102 |
+
temperature=0.5,
|
103 |
+
num_beams=1,
|
104 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
105 |
+
)
|
106 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
107 |
+
t.start()
|
108 |
+
|
109 |
+
partial_message = ""
|
110 |
+
for new_token in streamer:
|
111 |
+
if new_token != '<':
|
112 |
+
partial_message += new_token
|
113 |
+
yield partial_message
|
114 |
+
|
115 |
+
|
116 |
def generate_text(prompt, tokenizer, model):
|
117 |
# Tokenize the input
|
118 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
|
161 |
# with gr.Tab("E-Commerce"):
|
162 |
# e_commerce_interface()
|
163 |
with gr.Tab("OpenBB"):
|
164 |
+
gr.ChatInterface(predict2, examples=[
|
165 |
examples_openbb[0], examples_openbb[1], examples_openbb[2], examples_openbb[3]])
|
166 |
|
167 |
|