import os from huggingface_hub import HfApi # Info to change for your repository # ---------------------------------- TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY") COHERE_API_KEY = os.environ.get("COHERE_API_KEY") # Change to your org - don't forget to create a results and request dataset, with the correct format! OWNER = "umdclip" REPO_ID = f"{OWNER}/quizbowl-submission" QUEUE_REPO = f"{OWNER}/advcal-requests" RESULTS_REPO = f"{OWNER}/model-results" # TODO: change to advcal-results after testing is done LLM_CACHE_REPO = f"{OWNER}/advcal-llm-cache" EXAMPLES_PATH = "examples" PLAYGROUND_DATASET_NAMES = { "tossup": f"{OWNER}/acf-co24-tossups", "bonus": f"{OWNER}/acf-co24-bonuses", } # ---------------------------------- # If you setup a cache later, just change HF_HOME CACHE_PATH = os.getenv("HF_HOME", ".") # Local caches LLM_CACHE_PATH = os.path.join(CACHE_PATH, "llm-cache") EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk") EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk") LLM_CACHE_REFRESH_INTERVAL = 600 # seconds (30 minutes) SERVER_REFRESH_INTERVAL = 86400 # seconds (one day) LEADERBOARD_REFRESH_INTERVAL = 600 # seconds (10 minutes) API = HfApi(token=TOKEN)