Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -30,19 +30,22 @@ model_checkpoint = st.sidebar.radio("", model_list)
|
|
30 |
st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
|
31 |
st.sidebar.write("")
|
32 |
|
33 |
-
xlm_agg_strategy_info = "'aggregation_strategy' can be selected as 'simple' or 'none' for 'xlm-roberta' because of the RoBERTa model's tokenization approach."
|
34 |
|
35 |
-
st.sidebar.header("Select Aggregation Strategy Type")
|
36 |
if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
|
37 |
-
aggregation =
|
38 |
-
st.sidebar.
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
st.sidebar.write("")
|
43 |
st.sidebar.write("This English NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta.")
|
44 |
else:
|
45 |
-
aggregation =
|
|
|
46 |
|
47 |
st.sidebar.write("Please refer 'https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html' for entity grouping with aggregation_strategy parameter.")
|
48 |
|
@@ -73,8 +76,18 @@ if Run_Button == True:
|
|
73 |
|
74 |
ner_pipeline = setModel(model_checkpoint, aggregation)
|
75 |
output = ner_pipeline(input_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
df = pd.DataFrame.from_dict(
|
78 |
if aggregation != "none":
|
79 |
cols_to_keep = ['word','entity_group','score','start','end']
|
80 |
else:
|
@@ -90,7 +103,7 @@ if Run_Button == True:
|
|
90 |
spacy_display["text"] = input_text
|
91 |
spacy_display["title"] = None
|
92 |
|
93 |
-
for entity in
|
94 |
if aggregation != "none":
|
95 |
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
|
96 |
else:
|
|
|
30 |
st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
|
31 |
st.sidebar.write("")
|
32 |
|
33 |
+
# xlm_agg_strategy_info = "'aggregation_strategy' can be selected as 'simple' or 'none' for 'xlm-roberta' because of the RoBERTa model's tokenization approach."
|
34 |
|
35 |
+
# st.sidebar.header("Select Aggregation Strategy Type")
|
36 |
if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
|
37 |
+
aggregation = "simple"
|
38 |
+
# aggregation = st.sidebar.radio("", ('simple', 'none'))
|
39 |
+
# st.sidebar.write(xlm_agg_strategy_info)
|
40 |
+
elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english" or model_checkpoint == "tner/tner-xlm-roberta-base-ontonotes5":
|
41 |
+
aggregation = "simple"
|
42 |
+
# aggregation = st.sidebar.radio("", ('simple', 'none'))
|
43 |
+
# st.sidebar.write(xlm_agg_strategy_info)
|
44 |
st.sidebar.write("")
|
45 |
st.sidebar.write("This English NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta.")
|
46 |
else:
|
47 |
+
aggregation = "first"
|
48 |
+
# aggregation = st.sidebar.radio("", ('first', 'simple', 'average', 'max', 'none'))
|
49 |
|
50 |
st.sidebar.write("Please refer 'https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html' for entity grouping with aggregation_strategy parameter.")
|
51 |
|
|
|
76 |
|
77 |
ner_pipeline = setModel(model_checkpoint, aggregation)
|
78 |
output = ner_pipeline(input_text)
|
79 |
+
|
80 |
+
output_comb = []
|
81 |
+
for ind, entity in enumerate(output):
|
82 |
+
if ind == 0:
|
83 |
+
output_comb.append(entity)
|
84 |
+
elif output[ind]["start"] == output[ind-1]["end"]:
|
85 |
+
output_comb[ind-1]["entity"] = output_comb[ind-1]["entity"] + output[ind]["entity"]
|
86 |
+
output_comb[ind-1]["end"] = output[ind]["end"]
|
87 |
+
else:
|
88 |
+
output_comb.append(entity)
|
89 |
|
90 |
+
df = pd.DataFrame.from_dict(output_comb)
|
91 |
if aggregation != "none":
|
92 |
cols_to_keep = ['word','entity_group','score','start','end']
|
93 |
else:
|
|
|
103 |
spacy_display["text"] = input_text
|
104 |
spacy_display["title"] = None
|
105 |
|
106 |
+
for entity in output_comb:
|
107 |
if aggregation != "none":
|
108 |
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
|
109 |
else:
|