Hardik
commited on
Commit
·
a6b0e12
1
Parent(s):
89c8d8a
first commit
Browse files- .gitignore +4 -0
- app.py +93 -0
- requirements.txt +7 -0
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.mp4
|
| 3 |
+
*.pkl
|
| 4 |
+
*.log
|
app.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import dlib
|
| 5 |
+
import numpy as np
|
| 6 |
+
from imutils import face_utils
|
| 7 |
+
from torchvision import models, transforms
|
| 8 |
+
from tempfile import NamedTemporaryFile
|
| 9 |
+
|
| 10 |
+
# Load face detector and landmark predictor
|
| 11 |
+
face_detector = dlib.get_frontal_face_detector()
|
| 12 |
+
PREDICTOR_PATH = "./lib/shape_predictor_81_face_landmarks.dat"
|
| 13 |
+
face_predictor = dlib.shape_predictor(PREDICTOR_PATH)
|
| 14 |
+
|
| 15 |
+
# Load deepfake detection model
|
| 16 |
+
model = models.resnet34()
|
| 17 |
+
model.fc = torch.nn.Linear(model.fc.in_features, 2)
|
| 18 |
+
ckpt_path = "./resnet34.pkl"
|
| 19 |
+
model.load_state_dict(torch.load(ckpt_path, map_location="cpu"))
|
| 20 |
+
model.eval()
|
| 21 |
+
|
| 22 |
+
# Define transformation for face images
|
| 23 |
+
transform = transforms.Compose([
|
| 24 |
+
transforms.ToPILImage(),
|
| 25 |
+
transforms.Resize((224, 224)),
|
| 26 |
+
transforms.ToTensor(),
|
| 27 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 28 |
+
])
|
| 29 |
+
|
| 30 |
+
def process_video(video_path: str):
|
| 31 |
+
cap = cv2.VideoCapture(video_path)
|
| 32 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 33 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 34 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 35 |
+
|
| 36 |
+
output_path = video_path.replace(".mp4", "_processed.mp4")
|
| 37 |
+
output_video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
| 38 |
+
|
| 39 |
+
while cap.isOpened():
|
| 40 |
+
ret, frame = cap.read()
|
| 41 |
+
if not ret:
|
| 42 |
+
break
|
| 43 |
+
|
| 44 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 45 |
+
faces = face_detector(rgb_frame, 1)
|
| 46 |
+
|
| 47 |
+
for face in faces:
|
| 48 |
+
landmarks = face_utils.shape_to_np(face_predictor(rgb_frame, face))
|
| 49 |
+
x_min, y_min = np.min(landmarks, axis=0)
|
| 50 |
+
x_max, y_max = np.max(landmarks, axis=0)
|
| 51 |
+
|
| 52 |
+
face_crop = rgb_frame[y_min:y_max, x_min:x_max]
|
| 53 |
+
if face_crop.size == 0:
|
| 54 |
+
continue
|
| 55 |
+
|
| 56 |
+
face_tensor = transform(face_crop).unsqueeze(0)
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
output = torch.softmax(model(face_tensor), dim=1)
|
| 59 |
+
fake_confidence = output[0, 1].item() * 100 # Fake confidence as a percentage
|
| 60 |
+
label = "Fake" if fake_confidence > 50 else "Real"
|
| 61 |
+
color = (0, 0, 255) if label == "Fake" else (0, 255, 0)
|
| 62 |
+
|
| 63 |
+
# Annotating confidence score with label
|
| 64 |
+
label_text = f"{label} ({fake_confidence:.2f}%)"
|
| 65 |
+
|
| 66 |
+
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
|
| 67 |
+
cv2.putText(frame, label_text, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
|
| 68 |
+
|
| 69 |
+
output_video.write(frame)
|
| 70 |
+
|
| 71 |
+
cap.release()
|
| 72 |
+
output_video.release()
|
| 73 |
+
return output_path
|
| 74 |
+
|
| 75 |
+
def gradio_interface(video_file):
|
| 76 |
+
with NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
| 77 |
+
temp_file.write(video_file.read())
|
| 78 |
+
temp_path = temp_file.name
|
| 79 |
+
|
| 80 |
+
output_path = process_video(temp_path)
|
| 81 |
+
return output_path
|
| 82 |
+
|
| 83 |
+
# Gradio UI
|
| 84 |
+
iface = gr.Interface(
|
| 85 |
+
fn=gradio_interface,
|
| 86 |
+
inputs=gr.Video(label="Upload Video"),
|
| 87 |
+
outputs=gr.Video(label="Processed Video"),
|
| 88 |
+
title="Deepfake Detection",
|
| 89 |
+
description="Upload a video to detect deepfakes. The model will process faces and classify them as real or fake."
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
if __name__ == "__main__":
|
| 93 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
dlib
|
| 5 |
+
opencv-python
|
| 6 |
+
numpy
|
| 7 |
+
imutils
|