import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load your fine-tuned model and tokenizer model_name = "crystal99/my-fine-tuned-model" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Define the text generation function def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text # Set up the Gradio interface iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Text Generator using Fine-Tuned Model") # Launch the Gradio interface iface.launch()