import streamlit as st from streamlit_option_menu import option_menu from core.search_index import index, search from interface.components import component_show_search_result, component_text_input def page_landing_page(container): with container: st.header("Neural Search V1.0") st.markdown( "This is a tool to allow indexing & search content using neural capabilities" ) st.markdown( "In this first version you can:" "\n - Index raw text as documents" "\n - Use Dense Passage Retrieval pipeline" "\n - Search the indexed documents" ) st.makrdown( "TODO list:" "\n - Option to print pipeline structure on page" "\n - Build other pipelines" "\n - Include file/url indexing" "\n - [Optional] Include text to audio to read responses" ) def page_search(container): with container: st.title("Query me!") ## SEARCH ## query = st.text_input("Query") if st.button("Search"): st.session_state['search_results'] = search( queries=[query], pipeline=st.session_state['search_pipeline'], ) if 'search_results' in st.session_state: component_show_search_result( container=container, results=st.session_state['search_results'][0] ) def page_index(container): with container: st.title("Index time!") input_funcs = { "Raw Text": (component_text_input, "card-text"), } selected_input = option_menu( "Input Text", list(input_funcs.keys()), icons=[f[1] for f in input_funcs.values()], menu_icon="list", default_index=0, orientation="horizontal", ) corpus = input_funcs[selected_input][0](container) if len(corpus) > 0: index_results = None if st.button("Index"): index_results = index( corpus, st.session_state['index_pipeline'], ) if index_results: st.write(index_results)