""" Haystack Pipelines """ from haystack import Pipeline from haystack.document_stores import InMemoryDocumentStore from haystack.nodes.retriever import DensePassageRetriever, TfidfRetriever from haystack.nodes.preprocessor import PreProcessor from haystack.nodes.ranker import SentenceTransformersRanker def keyword_search(index="documents", split_word_length=100): """ **Keyword Search Pipeline** It looks for words in the documents that match the query by using TF-IDF. TF-IDF is a commonly used baseline for information retrieval that exploits two key intuitions: - Documents that have more lexical overlap with the query are more likely to be relevant - Words that occur in fewer documents are more significant than words that occur in many documents """ document_store = InMemoryDocumentStore(index=index) keyword_retriever = TfidfRetriever(document_store=(document_store)) processor = PreProcessor( clean_empty_lines=True, clean_whitespace=True, clean_header_footer=True, split_by="word", split_length=split_word_length, split_respect_sentence_boundary=True, split_overlap=0, ) # SEARCH PIPELINE search_pipeline = Pipeline() search_pipeline.add_node(keyword_retriever, name="TfidfRetriever", inputs=["Query"]) # INDEXING PIPELINE index_pipeline = Pipeline() index_pipeline.add_node(processor, name="Preprocessor", inputs=["File"]) index_pipeline.add_node( keyword_retriever, name="TfidfRetriever", inputs=["Preprocessor"] ) index_pipeline.add_node( document_store, name="DocumentStore", inputs=["TfidfRetriever"] ) return search_pipeline, index_pipeline def dense_passage_retrieval( index="documents", split_word_length=100, query_embedding_model="facebook/dpr-question_encoder-single-nq-base", passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base", ): """ **Dense Passage Retrieval Pipeline** Dense Passage Retrieval is a highly performant retrieval method that calculates relevance using dense representations. Key features: - One BERT base model to encode documents - One BERT base model to encode queries - Ranking of documents done by dot product similarity between query and document embeddings """ document_store = InMemoryDocumentStore(index=index) dpr_retriever = DensePassageRetriever( document_store=document_store, query_embedding_model=query_embedding_model, passage_embedding_model=passage_embedding_model, ) processor = PreProcessor( clean_empty_lines=True, clean_whitespace=True, clean_header_footer=True, split_by="word", split_length=split_word_length, split_respect_sentence_boundary=True, split_overlap=0, ) # SEARCH PIPELINE search_pipeline = Pipeline() search_pipeline.add_node(dpr_retriever, name="DPRRetriever", inputs=["Query"]) # INDEXING PIPELINE index_pipeline = Pipeline() index_pipeline.add_node(processor, name="Preprocessor", inputs=["File"]) index_pipeline.add_node(dpr_retriever, name="DPRRetriever", inputs=["Preprocessor"]) index_pipeline.add_node( document_store, name="DocumentStore", inputs=["DPRRetriever"] ) return search_pipeline, index_pipeline def dense_passage_retrieval_ranker( index="documents", split_word_length=100, query_embedding_model="facebook/dpr-question_encoder-single-nq-base", passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base", ranker_model="cross-encoder/ms-marco-MiniLM-L-12-v2", ): """ **Dense Passage Retrieval Ranker Pipeline** It adds a Ranker to the `Dense Passage Retrieval Pipeline`. - A Ranker reorders a set of Documents based on their relevance to the Query. - It is particularly useful when your Retriever has high recall but poor relevance scoring. - The improvement that the Ranker brings comes at the cost of some additional computation time. """ search_pipeline, index_pipeline = dense_passage_retrieval( index=index, split_word_length=split_word_length, query_embedding_model=query_embedding_model, passage_embedding_model=passage_embedding_model, ) ranker = SentenceTransformersRanker(model_name_or_path=ranker_model) search_pipeline.add_node(ranker, name="Ranker", inputs=["DPRRetriever"]) return search_pipeline, index_pipeline