import streamlit as st from langchain.prompts import PromptTemplate from langchain_community.llms import CTransformers def getLLamaResponse(input_text,no_words,blog_style): # LLma Model llm=CTransformers(model='models/llama-2-7b-chat.ggmlv3.q8_0.bin', model_type='llama', config={'max_new_tokens':256, 'temperature':0.01}) # Prompt Template # Prompt Template template = """ Write a blog for {blog_style} job profile for a topic {input_text} within {no_words} words. """ prompt = PromptTemplate(input_variables=["blog_style", "input_text", "no_words"], template=template) # Generate the response from the LLama 2 Model response = llm(prompt.format(blog_style=blog_style, input_text=input_text, no_words=no_words)) print(response) return response st.set_page_config(page_title = "Generate Blogs", page_icon = "🤖", layout = "centered", initial_sidebar_state = "collapsed") st.header("Generate Blogs 🤖") input_text = st.text_input("Enter the Blog Topic") # Creating 2 more columns for additional 2 fields col1, col2 = st.columns([5,5]) with col1: no_words = st.text_input("No of words") with col2: blog_style=st.selectbox("Writing the blog for", ("Researchers","Data Scientist","Common People"),index=0) submit = st.button("Generate") # Final Response if submit: st.write(getLLamaResponse(input_text,no_words,blog_style))