import gradio as gr import fitz import os import zipfile def process(input_pdf): # Conversion of PDF to JPG images pdf = fitz.open(input_pdf) first_page = pdf[0] pix = first_page.get_pixmap() image_bytes = pix.tobytes("jpg") pdf.close() temp_dir = "images" basename = os.path.basename(input_pdf).split('.')[0] image_name = basename + "jpg" os.makedirs(temp_dir, exist_ok=True) with open(os.path.join(temp_dir, image_name), "wb") as f: f.write(image_bytes) image_path = os.path.join(temp_dir, image_name) output = model.inference(image=image_path, prompt=task_prompt)["predictions"][0] return output task_name = "SGSInvoice" task_prompt = f"" model = DonutModel.from_pretrained("uartimcs/donut-invoice-extract") model.eval() demo = gr.Interface(fn=process,inputs=gr.File(file_types=['.pdf']),outputs="json", title=f"Donut 🍩 demonstration for `{task_name}` task",) demo.launch()