|
import os |
|
os.system('pip install git+https://github.com/huggingface/transformers --upgrade') |
|
|
|
import gradio as gr |
|
from transformers import ImageGPTFeatureExtractor, ImageGPTForCausalImageModeling |
|
import torch |
|
import numpy as np |
|
import requests |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
|
|
feature_extractor = ImageGPTFeatureExtractor.from_pretrained("openai/imagegpt-medium") |
|
model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-medium") |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
|
|
urls = ['https://i.imgflip.com/4/4t0m5.jpg', |
|
'https://cdn.openai.com/image-gpt/completions/igpt-xl-miscellaneous-2-orig.png', |
|
'https://cdn.openai.com/image-gpt/completions/igpt-xl-miscellaneous-29-orig.png', |
|
'https://cdn.openai.com/image-gpt/completions/igpt-xl-openai-cooking-0-orig.png' |
|
] |
|
for idx, url in enumerate(urls): |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
image.save(f"image_{idx}.png") |
|
|
|
def process_image(image): |
|
|
|
batch_size = 7 |
|
encoding = feature_extractor([image for _ in range(batch_size)], return_tensors="pt") |
|
|
|
|
|
samples = encoding.input_ids.numpy() |
|
n_px = feature_extractor.size |
|
clusters = feature_extractor.clusters |
|
n_px_crop = 16 |
|
primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] |
|
|
|
|
|
primers_img = np.reshape(np.rint(127.5 * (clusters[primers[0]] + 1.0)), [n_px_crop,n_px, 3]).astype(np.uint8) |
|
primers_img = np.pad(primers_img, pad_width=((0,16), (0,0), (0,0)), mode="constant") |
|
|
|
|
|
context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1) |
|
context = torch.tensor(context).to(device) |
|
output = model.generate(input_ids=context, max_length=n_px*n_px + 1, temperature=1.0, do_sample=True, top_k=40) |
|
|
|
|
|
samples = output[:,1:].cpu().detach().numpy() |
|
samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples] |
|
|
|
samples_img = [primers_img] + samples_img |
|
|
|
|
|
row1 = np.hstack(samples_img[:4]) |
|
row2 = np.hstack(samples_img[4:]) |
|
result = np.vstack([row1, row2]) |
|
|
|
|
|
completion = Image.fromarray(result) |
|
|
|
return completion |
|
|
|
title = "Interactive demo: ImageGPT" |
|
description = "Demo for OpenAI's ImageGPT: Generative Pretraining from Pixels. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>ImageGPT: Generative Pretraining from Pixels</a> | <a href='https://openai.com/blog/image-gpt/'>Official blog</a></p>" |
|
examples =[f"image_{idx}.png" for idx in range(len(urls))] |
|
|
|
iface = gr.Interface(fn=process_image, |
|
inputs=gr.inputs.Image(type="pil"), |
|
outputs=gr.outputs.Image(type="pil", label="Model input + completions"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
enable_queue=True) |
|
iface.launch(debug=True) |