Commit
·
742dfc3
1
Parent(s):
28e88f2
implement scripts for checking , add logging and update submission and integrate evaluation
Browse files- app.py +39 -9
- pyproject.toml +1 -0
- scripts/check_model.py +27 -0
- scripts/explore_arabml.py +24 -0
- scripts/explore_dataset.py +24 -0
- scripts/explore_tsac.py +24 -0
- src/display/utils.py +22 -0
- src/evaluator/evaluate.py +321 -138
- src/leaderboard/read_evals.py +49 -9
- src/submission/check_validity.py +8 -6
- src/submission/submit.py +316 -177
app.py
CHANGED
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
@@ -32,7 +38,32 @@ import time
|
|
32 |
|
33 |
|
34 |
def restart_space():
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
### Space initialisation
|
38 |
try:
|
@@ -109,25 +140,24 @@ def init_leaderboard(dataframe):
|
|
109 |
|
110 |
# Add model evaluation functionality
|
111 |
def evaluate_and_update(model_name, revision, precision, weight_type):
|
112 |
-
"""
|
113 |
try:
|
114 |
-
#
|
115 |
-
eval_result = evaluate_model(model_name, revision, precision, weight_type)
|
116 |
-
|
117 |
-
# Add evaluation to queue
|
118 |
add_new_eval(
|
119 |
model_name=model_name,
|
120 |
revision=revision,
|
121 |
precision=precision,
|
122 |
weight_type=weight_type,
|
123 |
-
|
124 |
)
|
125 |
|
126 |
# Update leaderboard
|
127 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
128 |
-
return "Evaluation
|
129 |
except Exception as e:
|
130 |
-
|
|
|
|
|
131 |
|
132 |
|
133 |
demo = gr.Blocks(css=custom_css)
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
# Load environment variables from .env file
|
5 |
+
load_dotenv()
|
6 |
+
|
7 |
import gradio as gr
|
8 |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
38 |
|
39 |
|
40 |
def restart_space():
|
41 |
+
try:
|
42 |
+
# Restart the space
|
43 |
+
API.restart_space(repo_id=REPO_ID)
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error restarting space: {str(e)}")
|
46 |
+
# If restart fails, try to download the datasets again
|
47 |
+
try:
|
48 |
+
print("Attempting to download datasets again...")
|
49 |
+
snapshot_download(
|
50 |
+
repo_id=QUEUE_REPO,
|
51 |
+
local_dir=EVAL_REQUESTS_PATH,
|
52 |
+
repo_type="dataset",
|
53 |
+
tqdm_class=None,
|
54 |
+
etag_timeout=30,
|
55 |
+
token=TOKEN
|
56 |
+
)
|
57 |
+
snapshot_download(
|
58 |
+
repo_id=RESULTS_REPO,
|
59 |
+
local_dir=EVAL_RESULTS_PATH,
|
60 |
+
repo_type="dataset",
|
61 |
+
tqdm_class=None,
|
62 |
+
etag_timeout=30,
|
63 |
+
token=TOKEN
|
64 |
+
)
|
65 |
+
except Exception as download_error:
|
66 |
+
print(f"Error downloading datasets: {str(download_error)}")
|
67 |
|
68 |
### Space initialisation
|
69 |
try:
|
|
|
140 |
|
141 |
# Add model evaluation functionality
|
142 |
def evaluate_and_update(model_name, revision, precision, weight_type):
|
143 |
+
"""Add a model evaluation request to the queue"""
|
144 |
try:
|
145 |
+
# Add evaluation request to queue
|
|
|
|
|
|
|
146 |
add_new_eval(
|
147 |
model_name=model_name,
|
148 |
revision=revision,
|
149 |
precision=precision,
|
150 |
weight_type=weight_type,
|
151 |
+
model_type="LLM", # Add appropriate model type
|
152 |
)
|
153 |
|
154 |
# Update leaderboard
|
155 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
156 |
+
return "Evaluation request added to queue! Check the leaderboard for updates."
|
157 |
except Exception as e:
|
158 |
+
print(f"Error in evaluate_and_update: {str(e)}")
|
159 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
160 |
+
return f"Error adding evaluation request: {str(e)}"
|
161 |
|
162 |
|
163 |
demo = gr.Blocks(css=custom_css)
|
pyproject.toml
CHANGED
@@ -18,6 +18,7 @@ dependencies = [
|
|
18 |
"numpy>=2.3.1",
|
19 |
"pandas>=2.3.0",
|
20 |
"python-dateutil>=2.9.0.post0",
|
|
|
21 |
"scikit-learn>=1.7.0",
|
22 |
"sentencepiece>=0.2.0",
|
23 |
"tokenizers>=0.15.0",
|
|
|
18 |
"numpy>=2.3.1",
|
19 |
"pandas>=2.3.0",
|
20 |
"python-dateutil>=2.9.0.post0",
|
21 |
+
"python-dotenv>=1.1.1",
|
22 |
"scikit-learn>=1.7.0",
|
23 |
"sentencepiece>=0.2.0",
|
24 |
"tokenizers>=0.15.0",
|
scripts/check_model.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig
|
2 |
+
import torch
|
3 |
+
|
4 |
+
def check_model(model_name):
|
5 |
+
try:
|
6 |
+
# Try to load the model configuration
|
7 |
+
config = AutoConfig.from_pretrained(model_name)
|
8 |
+
print("\nModel Configuration:")
|
9 |
+
print(config)
|
10 |
+
|
11 |
+
# Check if model_type is present
|
12 |
+
print("\nModel Type:", config.model_type if hasattr(config, 'model_type') else 'Not specified')
|
13 |
+
|
14 |
+
# Try to load the model
|
15 |
+
print("\nAttempting to load model...")
|
16 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
17 |
+
model_name,
|
18 |
+
torch_dtype=torch.float16,
|
19 |
+
trust_remote_code=True
|
20 |
+
)
|
21 |
+
print("\nSuccessfully loaded model!")
|
22 |
+
|
23 |
+
except Exception as e:
|
24 |
+
print(f"\nError: {str(e)}")
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
check_model("HabibBelguith44/Llama3-Tunisian-Dialect")
|
scripts/explore_arabml.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
|
3 |
+
def explore_arabml():
|
4 |
+
# Load the ArabML dataset
|
5 |
+
dataset = load_dataset("arbml/Tunisian_Dialect_Corpus", split="test")
|
6 |
+
|
7 |
+
# Print dataset info
|
8 |
+
print("\nDataset Info:")
|
9 |
+
print(dataset.info)
|
10 |
+
|
11 |
+
# Print first example
|
12 |
+
print("\nFirst Example:")
|
13 |
+
print(dataset[0])
|
14 |
+
|
15 |
+
# Print all column names
|
16 |
+
print("\nColumn Names:")
|
17 |
+
print(dataset.column_names)
|
18 |
+
|
19 |
+
# Print first few rows
|
20 |
+
print("\nFirst few rows:")
|
21 |
+
print(dataset[:3])
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
explore_arabml()
|
scripts/explore_dataset.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
|
3 |
+
def explore_dataset():
|
4 |
+
# Load the dataset
|
5 |
+
dataset = load_dataset("arbml/Tunisian_Dialect_Corpus", split="train")
|
6 |
+
|
7 |
+
# Print dataset info
|
8 |
+
print("\nDataset Info:")
|
9 |
+
print(dataset.info)
|
10 |
+
|
11 |
+
# Print first example
|
12 |
+
print("\nFirst Example:")
|
13 |
+
print(dataset[0])
|
14 |
+
|
15 |
+
# Print all column names
|
16 |
+
print("\nColumn Names:")
|
17 |
+
print(dataset.column_names)
|
18 |
+
|
19 |
+
# Print first few rows
|
20 |
+
print("\nFirst few rows:")
|
21 |
+
print(dataset[:3])
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
explore_dataset()
|
scripts/explore_tsac.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
|
3 |
+
def explore_tsac():
|
4 |
+
# Load the TSAC dataset
|
5 |
+
dataset = load_dataset("fbougares/tsac", split="train", trust_remote_code=True)
|
6 |
+
|
7 |
+
# Print dataset info
|
8 |
+
print("\nDataset Info:")
|
9 |
+
print(dataset.info)
|
10 |
+
|
11 |
+
# Print first example
|
12 |
+
print("\nFirst Example:")
|
13 |
+
print(dataset[0])
|
14 |
+
|
15 |
+
# Print all column names
|
16 |
+
print("\nColumn Names:")
|
17 |
+
print(dataset.column_names)
|
18 |
+
|
19 |
+
# Print first few rows
|
20 |
+
print("\nFirst few rows:")
|
21 |
+
print(dataset[:3])
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
explore_tsac()
|
src/display/utils.py
CHANGED
@@ -86,6 +86,28 @@ class WeightType(Enum):
|
|
86 |
Original = ModelDetails("Original")
|
87 |
Delta = ModelDetails("Delta")
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
class Precision(Enum):
|
90 |
float16 = ModelDetails("float16")
|
91 |
bfloat16 = ModelDetails("bfloat16")
|
|
|
86 |
Original = ModelDetails("Original")
|
87 |
Delta = ModelDetails("Delta")
|
88 |
|
89 |
+
@staticmethod
|
90 |
+
def from_str(weight_type):
|
91 |
+
"""Convert string representation to WeightType enum value.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
weight_type (str): The string representation of the weight type
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
WeightType: The corresponding enum value
|
98 |
+
|
99 |
+
Raises:
|
100 |
+
ValueError: If the weight type is not recognized
|
101 |
+
"""
|
102 |
+
weight_type = str(weight_type).lower()
|
103 |
+
if weight_type == "adapter":
|
104 |
+
return WeightType.Adapter
|
105 |
+
elif weight_type == "original":
|
106 |
+
return WeightType.Original
|
107 |
+
elif weight_type == "delta":
|
108 |
+
return WeightType.Delta
|
109 |
+
raise ValueError(f"Unknown weight type: {weight_type}")
|
110 |
+
|
111 |
class Precision(Enum):
|
112 |
float16 = ModelDetails("float16")
|
113 |
bfloat16 = ModelDetails("bfloat16")
|
src/evaluator/evaluate.py
CHANGED
@@ -5,7 +5,7 @@ from dataclasses import dataclass
|
|
5 |
from enum import Enum
|
6 |
from datetime import datetime
|
7 |
import torch
|
8 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
9 |
from datasets import load_dataset
|
10 |
|
11 |
from src.envs import API, OWNER, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH
|
@@ -29,94 +29,252 @@ class EvaluationResult:
|
|
29 |
def evaluate_tsac_sentiment(model, tokenizer, device):
|
30 |
"""Evaluate model on TSAC sentiment analysis task"""
|
31 |
try:
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def preprocess(examples):
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
dataset = dataset.map(preprocess, batched=True)
|
38 |
-
dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
model.eval()
|
|
|
|
|
|
|
41 |
with torch.no_grad():
|
42 |
predictions = []
|
43 |
-
|
44 |
|
45 |
-
for batch in dataset:
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
outputs = model(**inputs)
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
except Exception as e:
|
56 |
-
print(f"Error in TSAC evaluation: {str(e)}")
|
57 |
-
|
|
|
58 |
|
59 |
-
def evaluate_tunisian_corpus_coverage(model, tokenizer):
|
60 |
"""Evaluate model's coverage on Tunisian Dialect Corpus"""
|
61 |
try:
|
62 |
dataset = load_dataset("arbml/Tunisian_Dialect_Corpus", split="train")
|
63 |
|
64 |
def preprocess(examples):
|
65 |
-
|
|
|
|
|
66 |
|
67 |
dataset = dataset.map(preprocess, batched=True)
|
68 |
|
69 |
-
# Calculate coverage
|
70 |
total_tokens = 0
|
71 |
covered_tokens = 0
|
72 |
|
73 |
for example in dataset:
|
74 |
-
tokens = tokenizer.tokenize(example['
|
75 |
total_tokens += len(tokens)
|
76 |
covered_tokens += len([t for t in tokens if t != tokenizer.unk_token])
|
77 |
|
78 |
coverage = covered_tokens / total_tokens if total_tokens > 0 else 0
|
79 |
-
|
|
|
80 |
except Exception as e:
|
81 |
print(f"Error in Tunisian Corpus evaluation: {str(e)}")
|
82 |
-
|
83 |
|
84 |
def evaluate_model(model_name: str, revision: str, precision: str, weight_type: str) -> EvaluationResult:
|
85 |
"""Evaluate a single model on all tasks"""
|
86 |
try:
|
87 |
-
print(f"
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
92 |
-
model_name,
|
93 |
-
revision=revision,
|
94 |
-
torch_dtype=getattr(torch, precision),
|
95 |
-
trust_remote_code=True
|
96 |
-
).to(device)
|
97 |
-
|
98 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, revision=revision)
|
99 |
|
100 |
-
#
|
101 |
-
|
102 |
-
|
103 |
-
# TSAC Sentiment
|
104 |
-
tsac_result = evaluate_tsac_sentiment(model, tokenizer, device)
|
105 |
-
results[Tasks.tsac_sentiment.value.benchmark] = tsac_result
|
106 |
-
|
107 |
-
# Tunisian Corpus Coverage
|
108 |
-
corpus_result = evaluate_tunisian_corpus_coverage(model, tokenizer)
|
109 |
-
results[Tasks.tunisian_corpus.value.benchmark] = corpus_result
|
110 |
-
|
111 |
-
return EvaluationResult(
|
112 |
-
model=model_name,
|
113 |
-
revision=revision,
|
114 |
-
precision=precision,
|
115 |
-
weight_type=weight_type,
|
116 |
-
results=results
|
117 |
-
)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
except Exception as e:
|
|
|
|
|
|
|
120 |
return EvaluationResult(
|
121 |
model=model_name,
|
122 |
revision=revision,
|
@@ -128,99 +286,124 @@ def evaluate_model(model_name: str, revision: str, precision: str, weight_type:
|
|
128 |
|
129 |
def process_evaluation_queue():
|
130 |
"""Process all pending evaluations in the queue"""
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
pending_files = []
|
|
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
for
|
137 |
-
|
|
|
|
|
|
|
|
|
138 |
|
139 |
for file_path in pending_files:
|
140 |
-
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
eval_request
|
167 |
-
eval_request
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
user_dir = os.path.join(EVAL_RESULTS_PATH, username)
|
180 |
-
os.makedirs(user_dir, exist_ok=True)
|
181 |
-
result_file = os.path.join(user_dir, result_filename)
|
182 |
-
else:
|
183 |
-
result_file = os.path.join(EVAL_RESULTS_PATH, result_filename)
|
184 |
-
|
185 |
-
# First, update the request file with the results
|
186 |
-
request_file = os.path.join(os.path.dirname(file_path), os.path.basename(file_path))
|
187 |
-
with open(file_path, 'r') as f:
|
188 |
-
request_data = json.load(f)
|
189 |
-
|
190 |
-
# Update request file with results and status
|
191 |
-
request_data['results'] = result.results
|
192 |
-
request_data['status'] = EvaluationStatus.FINISHED.value
|
193 |
-
|
194 |
-
with open(file_path, 'w') as f:
|
195 |
-
json.dump(request_data, f, indent=2)
|
196 |
-
|
197 |
-
# Now create the results file
|
198 |
-
with open(result_file, 'w') as f:
|
199 |
-
json.dump({
|
200 |
-
'model': result.model,
|
201 |
-
'revision': result.revision,
|
202 |
-
'precision': result.precision,
|
203 |
-
'weight_type': result.weight_type,
|
204 |
-
'results': result.results,
|
205 |
-
'config': {
|
206 |
-
'model_name': result.model,
|
207 |
-
'model_dtype': result.precision,
|
208 |
-
'model_type': result.weight_type,
|
209 |
-
'architecture': 'Unknown',
|
210 |
-
'license': request_data.get('license', '?'),
|
211 |
-
'likes': request_data.get('likes', 0),
|
212 |
-
'num_params': request_data.get('params', 0),
|
213 |
-
'date': request_data.get('submitted_time', datetime.now().strftime('%Y-%m-%d')),
|
214 |
-
'still_on_hub': True
|
215 |
-
}
|
216 |
-
}, f, indent=2)
|
217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
# Upload to Hugging Face
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
226 |
|
|
|
5 |
from enum import Enum
|
6 |
from datetime import datetime
|
7 |
import torch
|
8 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
9 |
from datasets import load_dataset
|
10 |
|
11 |
from src.envs import API, OWNER, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH
|
|
|
29 |
def evaluate_tsac_sentiment(model, tokenizer, device):
|
30 |
"""Evaluate model on TSAC sentiment analysis task"""
|
31 |
try:
|
32 |
+
print("\n=== Starting TSAC sentiment evaluation ===")
|
33 |
+
print(f"Current device: {device}")
|
34 |
+
|
35 |
+
# Load and preprocess dataset
|
36 |
+
print("\nLoading and preprocessing TSAC dataset...")
|
37 |
+
dataset = load_dataset("fbougares/tsac", split="test", trust_remote_code=True)
|
38 |
+
print(f"Dataset size: {len(dataset)} examples")
|
39 |
|
40 |
def preprocess(examples):
|
41 |
+
print(f"\nProcessing batch of {len(examples['sentence'])} examples")
|
42 |
+
# Use 'sentence' field as per dataset structure
|
43 |
+
return tokenizer(
|
44 |
+
examples['sentence'],
|
45 |
+
padding=True,
|
46 |
+
truncation=True,
|
47 |
+
max_length=512,
|
48 |
+
return_tensors='pt'
|
49 |
+
)
|
50 |
|
51 |
dataset = dataset.map(preprocess, batched=True)
|
52 |
+
dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'target'])
|
53 |
+
|
54 |
+
# Check first example
|
55 |
+
first_example = dataset[0]
|
56 |
+
print("\nFirst example details:")
|
57 |
+
print(f"Input IDs shape: {first_example['input_ids'].shape}")
|
58 |
+
print(f"Attention mask shape: {first_example['attention_mask'].shape}")
|
59 |
+
print(f"Target: {first_example['target']}")
|
60 |
|
61 |
model.eval()
|
62 |
+
print(f"\nModel class: {model.__class__.__name__}")
|
63 |
+
print(f"Model device: {next(model.parameters()).device}")
|
64 |
+
|
65 |
with torch.no_grad():
|
66 |
predictions = []
|
67 |
+
targets = []
|
68 |
|
69 |
+
for i, batch in enumerate(dataset):
|
70 |
+
if i == 0:
|
71 |
+
print("\nProcessing first batch...")
|
72 |
+
print(f"Batch keys: {list(batch.keys())}")
|
73 |
+
print(f"Target shape: {batch['target'].shape}")
|
74 |
+
|
75 |
+
inputs = {k: v.to(device) for k, v in batch.items() if k != 'target'}
|
76 |
+
target = batch['target'].to(device)
|
77 |
|
78 |
outputs = model(**inputs)
|
79 |
+
print(f"\nBatch {i} output type: {type(outputs)}")
|
80 |
+
|
81 |
+
# Handle different model output formats
|
82 |
+
if isinstance(outputs, dict):
|
83 |
+
print(f"Output keys: {list(outputs.keys())}")
|
84 |
+
if 'logits' in outputs:
|
85 |
+
logits = outputs['logits']
|
86 |
+
elif 'prediction_logits' in outputs:
|
87 |
+
logits = outputs['prediction_logits']
|
88 |
+
else:
|
89 |
+
raise ValueError(f"Unknown output format. Available keys: {list(outputs.keys())}")
|
90 |
+
elif isinstance(outputs, tuple):
|
91 |
+
print(f"Output tuple length: {len(outputs)}")
|
92 |
+
logits = outputs[0]
|
93 |
+
else:
|
94 |
+
logits = outputs
|
95 |
+
|
96 |
+
print(f"Logits shape: {logits.shape}")
|
97 |
+
|
98 |
+
# For sequence classification, we typically use the [CLS] token's prediction
|
99 |
+
if len(logits.shape) == 3: # [batch_size, sequence_length, num_classes]
|
100 |
+
logits = logits[:, 0, :] # Take the [CLS] token prediction
|
101 |
+
|
102 |
+
print(f"Final logits shape: {logits.shape}")
|
103 |
+
|
104 |
+
batch_predictions = logits.argmax(dim=-1).cpu().tolist()
|
105 |
+
batch_targets = target.cpu().tolist()
|
106 |
+
|
107 |
+
predictions.extend(batch_predictions)
|
108 |
+
targets.extend(batch_targets)
|
109 |
+
|
110 |
+
if i == 0:
|
111 |
+
print("\nFirst batch predictions:")
|
112 |
+
print(f"Predictions: {batch_predictions[:5]}")
|
113 |
+
print(f"Targets: {batch_targets[:5]}")
|
114 |
+
|
115 |
+
print(f"\nTotal predictions: {len(predictions)}")
|
116 |
+
print(f"Total targets: {len(targets)}")
|
117 |
+
|
118 |
+
# Calculate accuracy
|
119 |
+
correct = sum(p == t for p, t in zip(predictions, targets))
|
120 |
+
total = len(predictions)
|
121 |
+
accuracy = correct / total if total > 0 else 0.0
|
122 |
+
|
123 |
+
print(f"\nEvaluation results:")
|
124 |
+
print(f"Correct predictions: {correct}")
|
125 |
+
print(f"Total predictions: {total}")
|
126 |
+
print(f"Accuracy: {accuracy:.4f}")
|
127 |
+
|
128 |
+
return {"accuracy": accuracy}
|
129 |
except Exception as e:
|
130 |
+
print(f"\n=== Error in TSAC evaluation: {str(e)} ===")
|
131 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
132 |
+
raise e
|
133 |
|
134 |
+
def evaluate_tunisian_corpus_coverage(model, tokenizer, device):
|
135 |
"""Evaluate model's coverage on Tunisian Dialect Corpus"""
|
136 |
try:
|
137 |
dataset = load_dataset("arbml/Tunisian_Dialect_Corpus", split="train")
|
138 |
|
139 |
def preprocess(examples):
|
140 |
+
print("Tunisian Corpus preprocess exemples -------------",examples)
|
141 |
+
# Use 'Tweet' field as per dataset structure
|
142 |
+
return tokenizer(examples['Tweet'], padding=True, truncation=True, max_length=512)
|
143 |
|
144 |
dataset = dataset.map(preprocess, batched=True)
|
145 |
|
146 |
+
# Calculate token coverage
|
147 |
total_tokens = 0
|
148 |
covered_tokens = 0
|
149 |
|
150 |
for example in dataset:
|
151 |
+
tokens = tokenizer.tokenize(example['Tweet'])
|
152 |
total_tokens += len(tokens)
|
153 |
covered_tokens += len([t for t in tokens if t != tokenizer.unk_token])
|
154 |
|
155 |
coverage = covered_tokens / total_tokens if total_tokens > 0 else 0
|
156 |
+
print(f"Tunisian Corpus Coverage: {coverage:.2%}")
|
157 |
+
return {"coverage": coverage}
|
158 |
except Exception as e:
|
159 |
print(f"Error in Tunisian Corpus evaluation: {str(e)}")
|
160 |
+
raise e # Raise the error instead of returning 0.0
|
161 |
|
162 |
def evaluate_model(model_name: str, revision: str, precision: str, weight_type: str) -> EvaluationResult:
|
163 |
"""Evaluate a single model on all tasks"""
|
164 |
try:
|
165 |
+
print(f"\nStarting evaluation for model: {model_name} (revision: {revision}, precision: {precision}, weight_type: {weight_type})")
|
166 |
+
print(f"Current working directory: {os.getcwd()}")
|
167 |
+
print(f"Evaluation requests path: {EVAL_REQUESTS_PATH}")
|
168 |
+
print(f"Evaluation results path: {EVAL_RESULTS_PATH}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
# Initialize device
|
171 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
172 |
+
print(f"Using device: {device}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
# Load model and tokenizer with enhanced error handling
|
175 |
+
try:
|
176 |
+
print(f"\nLoading model: {model_name}")
|
177 |
+
print(f"Model path exists: {os.path.exists(model_name)}")
|
178 |
+
|
179 |
+
# First try to load the config to check model type
|
180 |
+
try:
|
181 |
+
config = AutoConfig.from_pretrained(model_name, revision=revision)
|
182 |
+
print(f"Model type from config: {config.model_type}")
|
183 |
+
except Exception as config_error:
|
184 |
+
print(f"Error loading config: {str(config_error)}")
|
185 |
+
|
186 |
+
# Try loading with trust_remote_code=True first
|
187 |
+
try:
|
188 |
+
print("\nAttempting to load with trust_remote_code=True...")
|
189 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
190 |
+
model_name,
|
191 |
+
revision=revision,
|
192 |
+
torch_dtype=getattr(torch, precision),
|
193 |
+
trust_remote_code=True
|
194 |
+
).to(device)
|
195 |
+
print(f"Successfully loaded model {model_name} with trust_remote_code=True")
|
196 |
+
print(f"Model class: {model.__class__.__name__}")
|
197 |
+
except Exception as e1:
|
198 |
+
print(f"Error loading with trust_remote_code=True: {str(e1)}")
|
199 |
+
print(f"Error type: {type(e1).__name__}")
|
200 |
+
|
201 |
+
# If it's a model type error, try with llama as model type
|
202 |
+
if "Unrecognized model" in str(e1) and "llama" in model_name.lower():
|
203 |
+
print("\nAttempting to load as llama model...")
|
204 |
+
try:
|
205 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
206 |
+
model_name,
|
207 |
+
revision=revision,
|
208 |
+
torch_dtype=getattr(torch, precision),
|
209 |
+
trust_remote_code=True,
|
210 |
+
model_type="llama"
|
211 |
+
).to(device)
|
212 |
+
print(f"Successfully loaded model {model_name} as llama model")
|
213 |
+
print(f"Model class: {model.__class__.__name__}")
|
214 |
+
except Exception as e2:
|
215 |
+
print(f"Error loading as llama model: {str(e2)}")
|
216 |
+
print(f"Error type: {type(e2).__name__}")
|
217 |
+
raise Exception(f"Failed to load model with both methods: {str(e1)}, {str(e2)}")
|
218 |
+
else:
|
219 |
+
raise e1
|
220 |
+
|
221 |
+
print(f"\nLoading tokenizer: {model_name}")
|
222 |
+
try:
|
223 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, revision=revision)
|
224 |
+
print(f"Successfully loaded tokenizer for {model_name}")
|
225 |
+
print(f"Tokenizer class: {tokenizer.__class__.__name__}")
|
226 |
+
except Exception as e:
|
227 |
+
print(f"Error loading tokenizer: {str(e)}")
|
228 |
+
print(f"Error type: {type(e).__name__}")
|
229 |
+
raise Exception(f"Failed to load tokenizer: {str(e)}")
|
230 |
+
|
231 |
+
# Run evaluations
|
232 |
+
print("\nStarting TSAC sentiment evaluation...")
|
233 |
+
try:
|
234 |
+
tsac_results = evaluate_tsac_sentiment(model, tokenizer, device)
|
235 |
+
print(f"TSAC results: {tsac_results}")
|
236 |
+
except Exception as e:
|
237 |
+
print(f"Error in TSAC evaluation for {model_name}: {str(e)}")
|
238 |
+
print(f"Error type: {type(e).__name__}")
|
239 |
+
tsac_results = {"accuracy": None}
|
240 |
+
|
241 |
+
print("\nStarting Tunisian Corpus evaluation...")
|
242 |
+
try:
|
243 |
+
tunisian_results = evaluate_tunisian_corpus_coverage(model, tokenizer, device)
|
244 |
+
print(f"Tunisian Corpus results: {tunisian_results}")
|
245 |
+
except Exception as e:
|
246 |
+
print(f"Error in Tunisian Corpus evaluation for {model_name}: {str(e)}")
|
247 |
+
print(f"Error type: {type(e).__name__}")
|
248 |
+
tunisian_results = {"coverage": None}
|
249 |
+
|
250 |
+
print("\nEvaluation completed successfully!")
|
251 |
+
print(f"Final results: {tsac_results} | {tunisian_results}")
|
252 |
+
return EvaluationResult(
|
253 |
+
model=model_name,
|
254 |
+
revision=revision,
|
255 |
+
precision=precision,
|
256 |
+
weight_type=weight_type,
|
257 |
+
results={
|
258 |
+
**tsac_results,
|
259 |
+
**tunisian_results
|
260 |
+
}
|
261 |
+
)
|
262 |
+
except Exception as e:
|
263 |
+
print(f"\nError loading model {model_name}: {str(e)}")
|
264 |
+
print(f"Error type: {type(e).__name__}")
|
265 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
266 |
+
return EvaluationResult(
|
267 |
+
model=model_name,
|
268 |
+
revision=revision,
|
269 |
+
precision=precision,
|
270 |
+
weight_type=weight_type,
|
271 |
+
results={},
|
272 |
+
error=str(e)
|
273 |
+
)
|
274 |
except Exception as e:
|
275 |
+
print(f"\nError evaluating model {model_name}: {str(e)}")
|
276 |
+
print(f"Error type: {type(e).__name__}")
|
277 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
278 |
return EvaluationResult(
|
279 |
model=model_name,
|
280 |
revision=revision,
|
|
|
286 |
|
287 |
def process_evaluation_queue():
|
288 |
"""Process all pending evaluations in the queue"""
|
289 |
+
print(f"\n=== Starting evaluation queue processing ===")
|
290 |
+
print(f"Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
291 |
+
print(f"Looking for evaluation requests in: {EVAL_REQUESTS_PATH}")
|
292 |
+
|
293 |
+
# Get all pending evaluations
|
294 |
+
if not os.path.exists(EVAL_REQUESTS_PATH):
|
295 |
+
print(f"Evaluation requests path does not exist: {EVAL_REQUESTS_PATH}")
|
296 |
+
return
|
297 |
+
|
298 |
pending_files = []
|
299 |
+
for file in os.listdir(EVAL_REQUESTS_PATH):
|
300 |
+
if file.endswith('.json'):
|
301 |
+
pending_files.append(os.path.join(EVAL_REQUESTS_PATH, file))
|
302 |
|
303 |
+
print(f"Found {len(pending_files)} pending evaluation requests")
|
304 |
+
for file_path in pending_files:
|
305 |
+
print(f" - {file_path}")
|
306 |
+
|
307 |
+
if not pending_files:
|
308 |
+
print("No pending evaluation requests found")
|
309 |
+
return
|
310 |
|
311 |
for file_path in pending_files:
|
312 |
+
try:
|
313 |
+
print(f"\n=== Processing evaluation request: {file_path} ===")
|
314 |
|
315 |
+
# Read the file atomically
|
316 |
+
try:
|
317 |
+
with open(file_path, 'r') as f:
|
318 |
+
eval_request = json.load(f)
|
319 |
+
print(f"Loaded evaluation request: {json.dumps(eval_request, indent=2)}")
|
320 |
+
except Exception as e:
|
321 |
+
print(f"Error reading evaluation request: {str(e)}")
|
322 |
+
continue
|
323 |
|
324 |
+
# Skip non-pending evaluations
|
325 |
+
status = eval_request.get('status', 'UNKNOWN')
|
326 |
+
if status != EvaluationStatus.PENDING.value:
|
327 |
+
print(f"Skipping non-pending evaluation (status: {status})")
|
328 |
+
continue
|
329 |
+
|
330 |
+
# Update status to RUNNING
|
331 |
+
eval_request['status'] = EvaluationStatus.RUNNING.value
|
332 |
+
print(f"Updating status to RUNNING for {eval_request['model']}")
|
333 |
+
|
334 |
+
# Write the update atomically
|
335 |
+
try:
|
336 |
+
with open(file_path, 'w') as f:
|
337 |
+
json.dump(eval_request, f, indent=2)
|
338 |
+
print("Successfully updated status to RUNNING")
|
339 |
+
except Exception as e:
|
340 |
+
print(f"Error updating status: {str(e)}")
|
341 |
+
continue
|
342 |
+
|
343 |
+
# Get model info from request
|
344 |
+
model_name = eval_request.get('model', '')
|
345 |
+
revision = eval_request.get('revision', '')
|
346 |
+
precision = eval_request.get('precision', '')
|
347 |
+
weight_type = eval_request.get('weight_type', '')
|
348 |
+
|
349 |
+
if not model_name:
|
350 |
+
print("Error: Missing model name in evaluation request")
|
351 |
+
continue
|
352 |
+
|
353 |
+
print(f"\n=== Evaluating model: {model_name} ===")
|
354 |
+
print(f"Revision: {revision}")
|
355 |
+
print(f"Precision: {precision}")
|
356 |
+
print(f"Weight type: {weight_type}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
+
result = evaluate_model(model_name, revision, precision, weight_type)
|
359 |
+
|
360 |
+
# Update status and save results
|
361 |
+
if result.error:
|
362 |
+
print(f"\n=== Evaluation failed ===")
|
363 |
+
print(f"Error: {result.error}")
|
364 |
+
eval_request['status'] = EvaluationStatus.FAILED.value
|
365 |
+
eval_request['error'] = result.error
|
366 |
+
else:
|
367 |
+
print(f"\n=== Evaluation completed successfully ===")
|
368 |
+
print(f"Results: {result.results}")
|
369 |
+
eval_request['status'] = EvaluationStatus.FINISHED.value
|
370 |
+
eval_request['results'] = result.results
|
371 |
+
|
372 |
+
# Write the final update atomically
|
373 |
+
try:
|
374 |
+
with open(file_path, 'w') as f:
|
375 |
+
json.dump(eval_request, f, indent=2)
|
376 |
+
print("Successfully saved evaluation results")
|
377 |
+
except Exception as e:
|
378 |
+
print(f"Error saving evaluation results: {str(e)}")
|
379 |
+
continue
|
380 |
+
|
381 |
+
# Move successful evaluations to results directory
|
382 |
+
if eval_request['status'] == EvaluationStatus.FINISHED.value:
|
383 |
+
try:
|
384 |
+
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
385 |
+
result_file = os.path.join(EVAL_RESULTS_PATH, os.path.basename(file_path))
|
386 |
+
os.rename(file_path, result_file)
|
387 |
+
print(f"Moved evaluation results to: {result_file}")
|
388 |
+
except Exception as e:
|
389 |
+
print(f"Error moving results file: {str(e)}")
|
390 |
+
|
391 |
+
except Exception as e:
|
392 |
+
print(f"\n=== Error processing evaluation: {str(e)} ===")
|
393 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
394 |
+
continue
|
395 |
+
|
396 |
# Upload to Hugging Face
|
397 |
+
try:
|
398 |
+
if 'result_file' in locals():
|
399 |
+
API.upload_file(
|
400 |
+
path_or_fileobj=result_file,
|
401 |
+
path_in_repo=result_filename if not username else os.path.join(username, result_filename),
|
402 |
+
repo_id=f"{OWNER}/results",
|
403 |
+
repo_type="dataset",
|
404 |
+
commit_message=f"Add evaluation results for {result.model}"
|
405 |
+
)
|
406 |
+
print("Successfully uploaded results to Hugging Face")
|
407 |
+
except Exception as e:
|
408 |
+
print(f"Error uploading results to Hugging Face: {str(e)}")
|
409 |
|
src/leaderboard/read_evals.py
CHANGED
@@ -35,11 +35,37 @@ class EvalResult:
|
|
35 |
@classmethod
|
36 |
def init_from_json_file(self, json_filepath):
|
37 |
"""Inits the result from the specific model result file"""
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Precision
|
45 |
precision = Precision.from_str(config.get("model_dtype"))
|
@@ -71,7 +97,7 @@ class EvalResult:
|
|
71 |
results = {}
|
72 |
for task in Tasks:
|
73 |
task = task.value
|
74 |
-
|
75 |
# We average all scores of a given metric (not all metrics are present in all files)
|
76 |
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
77 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
@@ -167,9 +193,23 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
167 |
|
168 |
eval_results = {}
|
169 |
for model_result_filepath in model_result_filepaths:
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
# Store results of same eval together
|
175 |
eval_name = eval_result.eval_name
|
|
|
35 |
@classmethod
|
36 |
def init_from_json_file(self, json_filepath):
|
37 |
"""Inits the result from the specific model result file"""
|
38 |
+
try:
|
39 |
+
with open(json_filepath) as fp:
|
40 |
+
data = json.load(fp)
|
41 |
+
|
42 |
+
# Get model info
|
43 |
+
model_name = data.get('model')
|
44 |
+
org_and_model = model_name.split("/", 1)
|
45 |
+
org = org_and_model[0]
|
46 |
+
model = org_and_model[1]
|
47 |
+
|
48 |
+
# Get results
|
49 |
+
results = data.get('results', {})
|
50 |
+
precision = Precision.from_str(data.get('precision', 'Unknown'))
|
51 |
+
|
52 |
+
# Create EvalResult
|
53 |
+
return EvalResult(
|
54 |
+
eval_name=f"{org}_{model}_{precision.value}",
|
55 |
+
full_model=model_name,
|
56 |
+
org=org,
|
57 |
+
model=model,
|
58 |
+
revision=data.get('revision', ''),
|
59 |
+
results=results,
|
60 |
+
precision=precision,
|
61 |
+
model_type=ModelType.from_str(data.get('model_type', 'Unknown')),
|
62 |
+
weight_type=WeightType.from_str(data.get('weight_type', 'Original')),
|
63 |
+
date=data.get('submitted_at', ''),
|
64 |
+
still_on_hub=is_model_on_hub(model_name)
|
65 |
+
)
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Error reading evaluation file {json_filepath}: {str(e)}")
|
68 |
+
return None
|
69 |
|
70 |
# Precision
|
71 |
precision = Precision.from_str(config.get("model_dtype"))
|
|
|
97 |
results = {}
|
98 |
for task in Tasks:
|
99 |
task = task.value
|
100 |
+
|
101 |
# We average all scores of a given metric (not all metrics are present in all files)
|
102 |
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
103 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
|
|
193 |
|
194 |
eval_results = {}
|
195 |
for model_result_filepath in model_result_filepaths:
|
196 |
+
try:
|
197 |
+
# Creation of result
|
198 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
199 |
+
if eval_result is None:
|
200 |
+
print(f"Skipping invalid evaluation file: {model_result_filepath}")
|
201 |
+
continue
|
202 |
+
|
203 |
+
eval_result.update_with_request_file(requests_path)
|
204 |
+
|
205 |
+
# Store results of same eval together
|
206 |
+
if eval_result.eval_name not in eval_results:
|
207 |
+
eval_results[eval_result.eval_name] = []
|
208 |
+
eval_results[eval_result.eval_name].append(eval_result)
|
209 |
+
|
210 |
+
except Exception as e:
|
211 |
+
print(f"Error processing evaluation file {model_result_filepath}: {str(e)}")
|
212 |
+
continue
|
213 |
|
214 |
# Store results of same eval together
|
215 |
eval_name = eval_result.eval_name
|
src/submission/check_validity.py
CHANGED
@@ -74,10 +74,10 @@ def get_model_arch(model_info: ModelInfo):
|
|
74 |
"""Gets the model architecture from the configuration"""
|
75 |
return model_info.config.get("architectures", "Unknown")
|
76 |
|
77 |
-
def already_submitted_models(requested_models_dir: str) ->
|
78 |
-
"""Gather a
|
79 |
depth = 1
|
80 |
-
|
81 |
users_to_submission_dates = defaultdict(list)
|
82 |
|
83 |
for root, _, files in os.walk(requested_models_dir):
|
@@ -86,9 +86,11 @@ def already_submitted_models(requested_models_dir: str) -> set[str]:
|
|
86 |
for file in files:
|
87 |
if not file.endswith(".json"):
|
88 |
continue
|
89 |
-
|
|
|
90 |
info = json.load(f)
|
91 |
-
|
|
|
92 |
|
93 |
# Select organisation
|
94 |
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
@@ -96,4 +98,4 @@ def already_submitted_models(requested_models_dir: str) -> set[str]:
|
|
96 |
organisation, _ = info["model"].split("/")
|
97 |
users_to_submission_dates[organisation].append(info["submitted_time"])
|
98 |
|
99 |
-
return
|
|
|
74 |
"""Gets the model architecture from the configuration"""
|
75 |
return model_info.config.get("architectures", "Unknown")
|
76 |
|
77 |
+
def already_submitted_models(requested_models_dir: str) -> dict:
|
78 |
+
"""Gather a mapping of submitted models to their queue files to avoid duplicates"""
|
79 |
depth = 1
|
80 |
+
requested_models = {}
|
81 |
users_to_submission_dates = defaultdict(list)
|
82 |
|
83 |
for root, _, files in os.walk(requested_models_dir):
|
|
|
86 |
for file in files:
|
87 |
if not file.endswith(".json"):
|
88 |
continue
|
89 |
+
queue_file = os.path.join(root, file)
|
90 |
+
with open(queue_file, "r") as f:
|
91 |
info = json.load(f)
|
92 |
+
model_key = f"{info['model']}_{info['revision']}_{info['precision']}"
|
93 |
+
requested_models[model_key] = queue_file
|
94 |
|
95 |
# Select organisation
|
96 |
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
|
|
98 |
organisation, _ = info["model"].split("/")
|
99 |
users_to_submission_dates[organisation].append(info["submitted_time"])
|
100 |
|
101 |
+
return requested_models, users_to_submission_dates
|
src/submission/submit.py
CHANGED
@@ -20,6 +20,58 @@ import time
|
|
20 |
REQUESTED_MODELS = None
|
21 |
USERS_TO_SUBMISSION_DATES = None
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def add_new_eval(
|
24 |
model: str,
|
25 |
base_model: str,
|
@@ -28,144 +80,293 @@ def add_new_eval(
|
|
28 |
weight_type: str,
|
29 |
model_type: str,
|
30 |
):
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
"
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
tokenizer = AutoTokenizer.from_pretrained(model, revision=revision)
|
137 |
-
|
138 |
-
# Evaluate on TSAC
|
139 |
-
print("Evaluating on TSAC sentiment analysis...")
|
140 |
-
tsac_dataset = load_dataset("fbougares/tsac", split="test")
|
141 |
-
|
142 |
-
def preprocess_tsac(examples):
|
143 |
-
return tokenizer(examples['text'], padding=True, truncation=True, max_length=512)
|
144 |
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
model_obj.eval()
|
149 |
with torch.no_grad():
|
150 |
predictions = []
|
151 |
-
|
152 |
|
153 |
-
for batch in
|
154 |
-
inputs = {k: v.to(device) for k, v in batch.items() if k != '
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
outputs = model_obj(**inputs)
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
|
162 |
|
|
|
|
|
|
|
|
|
163 |
# Evaluate on ArabML
|
164 |
print("Evaluating on ArabML Tunisian Corpus...")
|
165 |
-
arabml_dataset = load_dataset("arbml/Tunisian_Dialect_Corpus", split="
|
166 |
|
167 |
def preprocess_arabml(examples):
|
168 |
-
return tokenizer(examples['
|
169 |
|
170 |
arabml_dataset = arabml_dataset.map(preprocess_arabml, batched=True)
|
171 |
|
@@ -173,72 +374,10 @@ def add_new_eval(
|
|
173 |
covered_tokens = 0
|
174 |
|
175 |
for example in arabml_dataset:
|
176 |
-
tokens = tokenizer.tokenize(example['
|
177 |
total_tokens += len(tokens)
|
178 |
covered_tokens += len([t for t in tokens if t != tokenizer.unk_token])
|
179 |
|
180 |
arabml_coverage = covered_tokens / total_tokens if total_tokens > 0 else 0
|
181 |
|
182 |
# Store results
|
183 |
-
eval_results = {
|
184 |
-
Tasks.tsac_sentiment.value.benchmark: tsac_accuracy,
|
185 |
-
Tasks.tunisian_corpus.value.benchmark: arabml_coverage
|
186 |
-
}
|
187 |
-
|
188 |
-
print(f"Evaluation results: {eval_results}")
|
189 |
-
|
190 |
-
# Update eval_entry with results
|
191 |
-
eval_entry["status"] = EvaluationStatus.FINISHED.value
|
192 |
-
eval_entry["results"] = eval_results
|
193 |
-
|
194 |
-
# Save to results dataset
|
195 |
-
results_file = os.path.join(EVAL_RESULTS_PATH, f"{model}_{revision}_{precision}_{weight_type}.json")
|
196 |
-
with open(results_file, 'w') as f:
|
197 |
-
json.dump({
|
198 |
-
'model': model,
|
199 |
-
'revision': revision,
|
200 |
-
'precision': precision,
|
201 |
-
'weight_type': weight_type,
|
202 |
-
'results': eval_results
|
203 |
-
}, f, indent=2)
|
204 |
-
|
205 |
-
# Upload results to Hugging Face
|
206 |
-
API.upload_file(
|
207 |
-
path_or_fileobj=results_file,
|
208 |
-
path_in_repo=os.path.basename(results_file),
|
209 |
-
repo_id=RESULTS_REPO,
|
210 |
-
repo_type="dataset",
|
211 |
-
commit_message=f"Add evaluation results for {model}"
|
212 |
-
)
|
213 |
-
|
214 |
-
# Remove the original eval request file
|
215 |
-
os.remove(out_path)
|
216 |
-
|
217 |
-
return styled_message(
|
218 |
-
f"Model evaluation completed!\n\n"
|
219 |
-
f"TSAC Sentiment Accuracy: {tsac_accuracy:.2%}\n"
|
220 |
-
f"ArabML Corpus Coverage: {arabml_coverage:.2%}"
|
221 |
-
)
|
222 |
-
|
223 |
-
except Exception as e:
|
224 |
-
print(f"Error during evaluation: {str(e)}")
|
225 |
-
eval_entry["status"] = EvaluationStatus.FAILED.value
|
226 |
-
eval_entry["error"] = str(e)
|
227 |
-
|
228 |
-
with open(out_path, "w") as f:
|
229 |
-
f.write(json.dumps(eval_entry))
|
230 |
-
|
231 |
-
API.upload_file(
|
232 |
-
path_or_fileobj=out_path,
|
233 |
-
path_in_repo=out_path.split("eval-queue/")[1],
|
234 |
-
repo_id=QUEUE_REPO,
|
235 |
-
repo_type="dataset",
|
236 |
-
commit_message=f"Add {model} evaluation error",
|
237 |
-
)
|
238 |
-
|
239 |
-
os.remove(out_path)
|
240 |
-
|
241 |
-
return styled_error(
|
242 |
-
f"Error during evaluation: {str(e)}\n\n"
|
243 |
-
"The evaluation will be retried automatically later."
|
244 |
-
)
|
|
|
20 |
REQUESTED_MODELS = None
|
21 |
USERS_TO_SUBMISSION_DATES = None
|
22 |
|
23 |
+
def create_eval_request(
|
24 |
+
model: str,
|
25 |
+
base_model: str,
|
26 |
+
revision: str,
|
27 |
+
precision: str,
|
28 |
+
weight_type: str,
|
29 |
+
model_type: str,
|
30 |
+
):
|
31 |
+
"""Create and upload an evaluation request"""
|
32 |
+
try:
|
33 |
+
# Create evaluation request file
|
34 |
+
request_data = {
|
35 |
+
'model': model,
|
36 |
+
'base_model': base_model,
|
37 |
+
'revision': revision,
|
38 |
+
'precision': precision,
|
39 |
+
'weight_type': weight_type,
|
40 |
+
'model_type': model_type,
|
41 |
+
'status': EvaluationStatus.PENDING.value,
|
42 |
+
'submitted_time': datetime.now(timezone.utc).isoformat()
|
43 |
+
}
|
44 |
+
|
45 |
+
# Create filename
|
46 |
+
username = model.split('/')[0] if '/' in model else None
|
47 |
+
request_filename = f"{username or 'unknown'}_{model.replace('/', '_')}_eval_request_{revision}_{precision}_{weight_type}.json"
|
48 |
+
request_path = os.path.join(EVAL_REQUESTS_PATH, request_filename)
|
49 |
+
|
50 |
+
# Write request file
|
51 |
+
with open(request_path, 'w') as f:
|
52 |
+
json.dump(request_data, f, indent=2)
|
53 |
+
|
54 |
+
print(f"Created evaluation request: {request_filename}")
|
55 |
+
|
56 |
+
# Upload to Hugging Face
|
57 |
+
API.upload_file(
|
58 |
+
path_or_fileobj=request_path,
|
59 |
+
path_in_repo=request_filename if not username else os.path.join(username, request_filename),
|
60 |
+
repo_id=QUEUE_REPO,
|
61 |
+
repo_type="dataset",
|
62 |
+
commit_message=f"Add evaluation request for {model}",
|
63 |
+
token=TOKEN
|
64 |
+
)
|
65 |
+
|
66 |
+
print(f"Uploaded evaluation request to {QUEUE_REPO}")
|
67 |
+
|
68 |
+
return styled_message(
|
69 |
+
"Evaluation request created! Please wait for the evaluation to complete."
|
70 |
+
)
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error creating evaluation request: {str(e)}")
|
73 |
+
return styled_error(f"Failed to create evaluation request: {str(e)}")
|
74 |
+
|
75 |
def add_new_eval(
|
76 |
model: str,
|
77 |
base_model: str,
|
|
|
80 |
weight_type: str,
|
81 |
model_type: str,
|
82 |
):
|
83 |
+
"""Validate model and create evaluation request"""
|
84 |
+
try:
|
85 |
+
print("\n=== Starting evaluation submission ===")
|
86 |
+
print(f"Submission time: {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC")
|
87 |
+
print(f"Model: {model}")
|
88 |
+
print(f"Base model: {base_model}")
|
89 |
+
print(f"Revision: {revision}")
|
90 |
+
print(f"Precision: {precision}")
|
91 |
+
print(f"Weight type: {weight_type}")
|
92 |
+
print(f"Model type: {model_type}")
|
93 |
+
print(f"Evaluation requests path: {EVAL_REQUESTS_PATH}")
|
94 |
+
print(f"Queue repo: {QUEUE_REPO}")
|
95 |
+
|
96 |
+
# Always refresh the cache before checking for duplicates
|
97 |
+
print("\n=== Checking for duplicate submissions ===")
|
98 |
+
global REQUESTED_MODELS
|
99 |
+
global USERS_TO_SUBMISSION_DATES
|
100 |
+
start_time = time.time()
|
101 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
102 |
+
print(f"Cache refresh completed in {time.time() - start_time:.2f} seconds")
|
103 |
+
print(f"Found {len(REQUESTED_MODELS)} existing submissions")
|
104 |
|
105 |
+
user_name = ""
|
106 |
+
model_path = model
|
107 |
+
if "/" in model:
|
108 |
+
user_name = model.split("/")[0]
|
109 |
+
model_path = model.split("/")[1]
|
110 |
+
print(f"\nUser name: {user_name}")
|
111 |
+
print(f"Model path: {model_path}")
|
112 |
|
113 |
+
precision = precision.split(" ")[0]
|
114 |
+
if revision == "":
|
115 |
+
revision = "main"
|
116 |
+
print("Using default revision: main")
|
117 |
+
|
118 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
119 |
+
|
120 |
+
# Check if model is already submitted
|
121 |
+
print("\n=== Checking for existing submission ===")
|
122 |
+
model_key = f"{model}_{revision}_{precision}"
|
123 |
+
if model_key in REQUESTED_MODELS:
|
124 |
+
print(f"Found existing submission with key: {model_key}")
|
125 |
+
# Get the status from the queue file
|
126 |
+
queue_file = REQUESTED_MODELS[model_key]
|
127 |
+
try:
|
128 |
+
with open(queue_file, 'r') as f:
|
129 |
+
queue_entry = json.load(f)
|
130 |
+
status = queue_entry.get('status')
|
131 |
+
print(f"Found existing submission with status: {status}")
|
132 |
+
if status is None:
|
133 |
+
print(f"Warning: No status found in queue file {queue_file}")
|
134 |
+
return styled_warning("Error checking model status. Please try again later.")
|
135 |
+
|
136 |
+
if status != EvaluationStatus.FAILED.value:
|
137 |
+
print(f"Model already submitted and in {status} status")
|
138 |
+
return styled_warning(f"This model has been already submitted and is in {status} status.")
|
139 |
+
except Exception as e:
|
140 |
+
print(f"Error reading queue file: {e}")
|
141 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
142 |
+
return styled_warning("Error checking model status. Please try again later.")
|
143 |
+
except Exception as e:
|
144 |
+
print(f"Error during evaluation: {str(e)}")
|
145 |
+
raise
|
146 |
|
147 |
+
print("\n=== Validating model type ===")
|
148 |
+
if model_type is None or model_type == "":
|
149 |
+
print("Error: Model type is missing")
|
150 |
+
return styled_error("Please select a model type.")
|
151 |
|
152 |
+
print("\n=== Validating model existence ===")
|
153 |
+
if revision == "":
|
154 |
+
revision = "main"
|
155 |
+
print("Using default revision: main")
|
156 |
|
157 |
+
print("\n=== Validating model on Hugging Face ===")
|
158 |
+
try:
|
159 |
+
if weight_type in ["Delta", "Adapter"]:
|
160 |
+
print(f"Checking base model {base_model} on Hugging Face...")
|
161 |
+
base_model_on_hub, error, _ = is_model_on_hub(
|
162 |
+
model_name=base_model,
|
163 |
+
revision=revision,
|
164 |
+
token=TOKEN,
|
165 |
+
test_tokenizer=True
|
166 |
+
)
|
167 |
+
print(f"Base model check result: {base_model_on_hub}")
|
168 |
+
if not base_model_on_hub:
|
169 |
+
print(f"Error: Base model not found: {error}")
|
170 |
+
return styled_error(f'Base model "{base_model}" {error}')
|
171 |
|
172 |
+
if not weight_type == "Adapter":
|
173 |
+
print(f"Checking model {model} on Hugging Face...")
|
174 |
+
model_on_hub, error, _ = is_model_on_hub(
|
175 |
+
model_name=model,
|
176 |
+
revision=revision,
|
177 |
+
token=TOKEN,
|
178 |
+
test_tokenizer=True
|
179 |
+
)
|
180 |
+
print(f"Model check result: {model_on_hub}")
|
181 |
+
if not model_on_hub:
|
182 |
+
print(f"Error: Model not found: {error}")
|
183 |
+
return styled_error(f'Model "{model}" {error}')
|
184 |
+
except Exception as e:
|
185 |
+
print(f"Error checking model on Hugging Face: {e}")
|
186 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
187 |
+
return styled_error(f"Failed to validate model on Hugging Face: {str(e)}")
|
188 |
|
189 |
+
print("\n=== Getting model info ===")
|
190 |
+
try:
|
191 |
+
model_info = API.model_info(repo_id=model, revision=revision)
|
192 |
+
print(f"Successfully retrieved model info for {model}")
|
193 |
+
except Exception as e:
|
194 |
+
print(f"Error getting model info: {e}")
|
195 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
196 |
+
return styled_error("Could not get your model information. Please fill it up properly.")
|
197 |
|
198 |
+
print("\n=== Getting model size ===")
|
199 |
+
try:
|
200 |
+
model_size = get_model_size(model_info=model_info, precision=precision)
|
201 |
+
print(f"Model size: {model_size}")
|
202 |
+
except Exception as e:
|
203 |
+
print(f"Error getting model size: {e}")
|
204 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
205 |
+
model_size = "?"
|
206 |
|
207 |
+
print("\n=== Validating model card and license ===")
|
208 |
+
try:
|
209 |
+
license = model_info.cardData["license"]
|
210 |
+
print(f"Model license: {license}")
|
211 |
+
except Exception as e:
|
212 |
+
print(f"Error getting model license: {e}")
|
213 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
214 |
+
return styled_error("Please select a license for your model")
|
215 |
+
|
216 |
+
print("\n=== Checking model card ===")
|
217 |
+
try:
|
218 |
+
modelcard_OK, error_msg = check_model_card(model)
|
219 |
+
print(f"Model card check result: {modelcard_OK}")
|
220 |
+
if not modelcard_OK:
|
221 |
+
print(f"Model card error: {error_msg}")
|
222 |
+
return styled_error(error_msg)
|
223 |
+
except Exception as e:
|
224 |
+
print(f"Error checking model card: {e}")
|
225 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
226 |
+
return styled_error("Failed to validate model card")
|
227 |
+
|
228 |
+
print("\n=== Creating evaluation entry ===")
|
229 |
+
eval_entry = {
|
230 |
+
"model": model,
|
231 |
+
"base_model": base_model,
|
232 |
+
"revision": revision,
|
233 |
+
"precision": precision,
|
234 |
+
"weight_type": weight_type,
|
235 |
+
"status": "PENDING",
|
236 |
+
"submitted_time": current_time,
|
237 |
+
"model_type": model_type,
|
238 |
+
"likes": model_info.likes,
|
239 |
+
"params": model_size,
|
240 |
+
"license": license,
|
241 |
+
"private": False,
|
242 |
+
}
|
243 |
+
print(f"\nEvaluation entry created: {json.dumps(eval_entry, indent=2)}")
|
244 |
+
|
245 |
+
print("\n=== Checking for duplicate submission ===")
|
246 |
+
model_key = f"{model}_{revision}_{precision}"
|
247 |
+
if model_key in REQUESTED_MODELS:
|
248 |
+
print(f"Found existing submission with key: {model_key}")
|
249 |
+
# Get the status from the queue file
|
250 |
+
queue_file = REQUESTED_MODELS[model_key]
|
251 |
+
try:
|
252 |
+
with open(queue_file, 'r') as f:
|
253 |
+
queue_entry = json.load(f)
|
254 |
+
status = queue_entry.get('status')
|
255 |
+
print(f"Found existing submission with status: {status}")
|
256 |
+
if status is None:
|
257 |
+
print(f"Warning: No status found in queue file {queue_file}")
|
258 |
+
return styled_warning("Error checking model status. Please try again later.")
|
259 |
+
|
260 |
+
if status != EvaluationStatus.FAILED.value:
|
261 |
+
print(f"Model already submitted and in {status} status")
|
262 |
+
return styled_warning(f"This model has been already submitted and is in {status} status.")
|
263 |
+
except Exception as e:
|
264 |
+
print(f"Error reading queue file: {e}")
|
265 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
266 |
+
return styled_warning("Error checking model status. Please try again later.")
|
267 |
+
|
268 |
+
print("\n=== Creating evaluation file ===")
|
269 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
270 |
+
print(f"Creating output directory: {OUT_DIR}")
|
271 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
274 |
+
print(f"Output file path: {out_path}")
|
275 |
+
|
276 |
+
# Write evaluation entry to file
|
277 |
+
try:
|
278 |
+
with open(out_path, "w") as f:
|
279 |
+
f.write(json.dumps(eval_entry))
|
280 |
+
print("\nEvaluation file created successfully")
|
281 |
+
|
282 |
+
# Upload to Hugging Face
|
283 |
+
print("\n=== Uploading evaluation file ===")
|
284 |
+
API.upload_file(
|
285 |
+
path_or_fileobj=out_path,
|
286 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
287 |
+
repo_id=QUEUE_REPO,
|
288 |
+
repo_type="dataset",
|
289 |
+
commit_message=f"Add evaluation request for {model}",
|
290 |
+
token=TOKEN
|
291 |
+
)
|
292 |
+
print(f"\nEvaluation request uploaded successfully to {QUEUE_REPO}")
|
293 |
+
|
294 |
+
# Clean up local file
|
295 |
+
os.remove(out_path)
|
296 |
+
print("\nLocal evaluation file removed")
|
297 |
+
|
298 |
+
return styled_message(
|
299 |
+
"Evaluation request created successfully! Please wait for the evaluation to complete."
|
300 |
+
)
|
301 |
+
except Exception as e:
|
302 |
+
print(f"Error during file operations: {str(e)}")
|
303 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
304 |
+
return styled_error(f"Failed to create evaluation request: {str(e)}")
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
dataloader = DataLoader(tsac_dataset, batch_size=32, shuffle=False)
|
309 |
|
310 |
model_obj.eval()
|
311 |
with torch.no_grad():
|
312 |
predictions = []
|
313 |
+
targets = []
|
314 |
|
315 |
+
for batch in dataloader:
|
316 |
+
inputs = {k: v.to(device) for k, v in batch.items() if k != 'target'}
|
317 |
+
target = batch['target'].to(device)
|
318 |
+
|
319 |
+
# Log the first batch details
|
320 |
+
if len(predictions) == 0: # Only log for the first batch
|
321 |
+
print(f"\nFirst batch example:")
|
322 |
+
print(f"Input keys: {list(inputs.keys())}")
|
323 |
+
print(f"Target shape: {target.shape}")
|
324 |
|
325 |
outputs = model_obj(**inputs)
|
326 |
+
print(f"\nModel output type: {type(outputs)}")
|
327 |
+
|
328 |
+
# Try to get logits from different possible formats
|
329 |
+
if isinstance(outputs, dict):
|
330 |
+
print(f"Output keys: {list(outputs.keys())}")
|
331 |
+
# Try different common keys
|
332 |
+
if 'logits' in outputs:
|
333 |
+
logits = outputs['logits']
|
334 |
+
elif 'prediction_logits' in outputs:
|
335 |
+
logits = outputs['prediction_logits']
|
336 |
+
else:
|
337 |
+
raise ValueError(f"Unknown output format. Available keys: {list(outputs.keys())}")
|
338 |
+
elif isinstance(outputs, tuple):
|
339 |
+
print(f"Output tuple length: {len(outputs)}")
|
340 |
+
# Try different positions in the tuple
|
341 |
+
if len(outputs) > 0:
|
342 |
+
logits = outputs[0]
|
343 |
+
else:
|
344 |
+
raise ValueError("Empty output tuple")
|
345 |
+
else:
|
346 |
+
# If it's a single tensor, assume it's the logits
|
347 |
+
logits = outputs
|
348 |
+
|
349 |
+
print(f"Logits shape: {logits.shape}")
|
350 |
+
# For sequence classification, we typically use the [CLS] token's prediction
|
351 |
+
# Get the first token's prediction (CLS token)
|
352 |
+
cls_logits = logits[:, 0, :] # Shape: [batch_size, num_classes]
|
353 |
+
predictions.extend(cls_logits.argmax(dim=-1).cpu().tolist())
|
354 |
+
targets.extend(target.cpu().tolist())
|
355 |
+
|
356 |
+
accuracy = sum(p == t for p, t in zip(predictions, targets)) / len(predictions)
|
357 |
|
358 |
+
eval_entry['results'] = {'accuracy': accuracy}
|
359 |
|
360 |
+
# Update the queue file with results
|
361 |
+
with open(out_path, "w") as f:
|
362 |
+
f.write(json.dumps(eval_entry))
|
363 |
+
|
364 |
# Evaluate on ArabML
|
365 |
print("Evaluating on ArabML Tunisian Corpus...")
|
366 |
+
arabml_dataset = load_dataset("arbml/Tunisian_Dialect_Corpus", split="train", trust_remote_code=True)
|
367 |
|
368 |
def preprocess_arabml(examples):
|
369 |
+
return tokenizer(examples['Tweet'], padding=True, truncation=True, max_length=512)
|
370 |
|
371 |
arabml_dataset = arabml_dataset.map(preprocess_arabml, batched=True)
|
372 |
|
|
|
374 |
covered_tokens = 0
|
375 |
|
376 |
for example in arabml_dataset:
|
377 |
+
tokens = tokenizer.tokenize(example['Tweet'])
|
378 |
total_tokens += len(tokens)
|
379 |
covered_tokens += len([t for t in tokens if t != tokenizer.unk_token])
|
380 |
|
381 |
arabml_coverage = covered_tokens / total_tokens if total_tokens > 0 else 0
|
382 |
|
383 |
# Store results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|