Commit
·
2f1e30c
1
Parent(s):
34052ff
feat: enhance evaluation queue reliability and add stale job recovery
Browse files- Add timeout mechanism for stalled RUNNING evaluations
- Implement automatic reset of stale RUNNING jobs to PENDING status
- Increase sleep interval between evaluation cycles to 3 minutes
- Add pydantic dependency for better data validation
- Improve error handling and logging in submission process
- Update repository references to use TunisianLLMLeaderBoard
- Add debug logging for file uploads in submission flow
- Fix timezone handling for evaluation timestamps
- app.py +9 -43
- pyproject.toml +1 -0
- src/envs.py +1 -1
- src/evaluator/evaluate.py +36 -24
- src/evaluator/run_evaluator.py +4 -4
- src/submission/submit.py +4 -0
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from dotenv import load_dotenv
|
2 |
-
|
3 |
load_dotenv()
|
4 |
|
5 |
import gradio as gr
|
@@ -30,14 +30,12 @@ from src.display.utils import (
|
|
30 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
31 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
32 |
from src.submission.submit import add_new_eval
|
33 |
-
from src.evaluator.evaluate import process_evaluation_queue
|
34 |
-
import threading
|
35 |
-
import time
|
36 |
|
37 |
|
38 |
def restart_space():
|
39 |
try:
|
40 |
-
|
|
|
41 |
except Exception as e:
|
42 |
print(f"Error restarting space: {str(e)}")
|
43 |
try:
|
@@ -53,21 +51,6 @@ def restart_space():
|
|
53 |
|
54 |
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
def run_evaluator():
|
59 |
-
print("Starting evaluator service...")
|
60 |
-
while True:
|
61 |
-
try:
|
62 |
-
process_evaluation_queue()
|
63 |
-
print("Evaluation queue processed. Sleeping for 5 minutes...")
|
64 |
-
time.sleep(10) # Sleep for 5 minutes
|
65 |
-
except Exception as e:
|
66 |
-
print(f"Error in evaluation process: {e}")
|
67 |
-
print("Retrying in 5 minutes...")
|
68 |
-
time.sleep(10)
|
69 |
-
|
70 |
-
|
71 |
def init_leaderboard(dataframe):
|
72 |
if dataframe is None:
|
73 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
@@ -93,27 +76,14 @@ def init_leaderboard(dataframe):
|
|
93 |
|
94 |
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
add_new_eval(
|
100 |
-
model_name=model_name,
|
101 |
-
revision=revision,
|
102 |
-
precision=precision,
|
103 |
-
weight_type=weight_type,
|
104 |
-
model_type="LLM",
|
105 |
-
)
|
106 |
-
get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
107 |
-
return "Evaluation request added to queue! Check the leaderboard for updates."
|
108 |
-
except Exception as e:
|
109 |
-
print(f"Error in evaluate_and_update: {str(e)}")
|
110 |
-
print(f"Full traceback: {traceback.format_exc()}")
|
111 |
-
return f"Error adding evaluation request: {str(e)}"
|
112 |
-
|
113 |
|
114 |
### Space initialisation
|
115 |
try:
|
116 |
print(f"\n=== Starting space initialization ===")
|
|
|
117 |
print(f"EVAL_REQUESTS_PATH: {EVAL_REQUESTS_PATH}")
|
118 |
print(f"EVAL_RESULTS_PATH: {EVAL_RESULTS_PATH}")
|
119 |
print(f"QUEUE_REPO: {QUEUE_REPO}")
|
@@ -144,12 +114,8 @@ try:
|
|
144 |
except Exception as e:
|
145 |
print(f"\n=== Error during space initialization ===")
|
146 |
print(f"Error: {str(e)}")
|
147 |
-
restart_space()
|
148 |
-
|
149 |
-
|
150 |
|
151 |
-
evaluator_thread = threading.Thread(target=run_evaluator, daemon=True)
|
152 |
-
evaluator_thread.start()
|
153 |
|
154 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
155 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
@@ -270,6 +236,6 @@ with demo:
|
|
270 |
)
|
271 |
|
272 |
scheduler = BackgroundScheduler()
|
273 |
-
scheduler.add_job(restart_space, "interval", seconds=
|
274 |
scheduler.start()
|
275 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
from dotenv import load_dotenv
|
2 |
+
import sys
|
3 |
load_dotenv()
|
4 |
|
5 |
import gradio as gr
|
|
|
30 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
31 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
32 |
from src.submission.submit import add_new_eval
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
def restart_space():
|
36 |
try:
|
37 |
+
print("Restarting space...")
|
38 |
+
API.restart_space(repo_id=REPO_ID,token=TOKEN)
|
39 |
except Exception as e:
|
40 |
print(f"Error restarting space: {str(e)}")
|
41 |
try:
|
|
|
51 |
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def init_leaderboard(dataframe):
|
55 |
if dataframe is None:
|
56 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
76 |
|
77 |
|
78 |
|
79 |
+
# API.delete_files(repo_id=QUEUE_REPO, token=TOKEN,delete_patterns=["*"],commit_message="Clearing queue",repo_type="dataset")
|
80 |
+
# API.delete_files(repo_id=RESULTS_REPO, token=TOKEN,delete_patterns=["*"],commit_message="Clearing results",repo_type="dataset")
|
81 |
+
# sys.exit(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
### Space initialisation
|
84 |
try:
|
85 |
print(f"\n=== Starting space initialization ===")
|
86 |
+
|
87 |
print(f"EVAL_REQUESTS_PATH: {EVAL_REQUESTS_PATH}")
|
88 |
print(f"EVAL_RESULTS_PATH: {EVAL_RESULTS_PATH}")
|
89 |
print(f"QUEUE_REPO: {QUEUE_REPO}")
|
|
|
114 |
except Exception as e:
|
115 |
print(f"\n=== Error during space initialization ===")
|
116 |
print(f"Error: {str(e)}")
|
117 |
+
# restart_space()
|
|
|
|
|
118 |
|
|
|
|
|
119 |
|
120 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
121 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
|
|
236 |
)
|
237 |
|
238 |
scheduler = BackgroundScheduler()
|
239 |
+
scheduler.add_job(restart_space, "interval", seconds=300)
|
240 |
scheduler.start()
|
241 |
demo.queue(default_concurrency_limit=40).launch()
|
pyproject.toml
CHANGED
@@ -17,6 +17,7 @@ dependencies = [
|
|
17 |
"matplotlib>=3.10.3",
|
18 |
"numpy>=2.3.1",
|
19 |
"pandas>=2.3.0",
|
|
|
20 |
"python-dateutil>=2.9.0.post0",
|
21 |
"python-dotenv>=1.1.1",
|
22 |
"scikit-learn>=1.7.0",
|
|
|
17 |
"matplotlib>=3.10.3",
|
18 |
"numpy>=2.3.1",
|
19 |
"pandas>=2.3.0",
|
20 |
+
"pydantic>=2.11.7",
|
21 |
"python-dateutil>=2.9.0.post0",
|
22 |
"python-dotenv>=1.1.1",
|
23 |
"scikit-learn>=1.7.0",
|
src/envs.py
CHANGED
@@ -9,7 +9,7 @@ TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
|
9 |
OWNER = "hamzabouajila" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
# ----------------------------------
|
11 |
|
12 |
-
REPO_ID = f"{OWNER}/
|
13 |
QUEUE_REPO = f"{OWNER}/requests"
|
14 |
RESULTS_REPO = f"{OWNER}/results"
|
15 |
|
|
|
9 |
OWNER = "hamzabouajila" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
# ----------------------------------
|
11 |
|
12 |
+
REPO_ID = f"{OWNER}/TunisianLLMLeaderBoard"
|
13 |
QUEUE_REPO = f"{OWNER}/requests"
|
14 |
RESULTS_REPO = f"{OWNER}/results"
|
15 |
|
src/evaluator/evaluate.py
CHANGED
@@ -1,19 +1,16 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
import
|
4 |
-
from typing import Dict
|
5 |
from dataclasses import dataclass
|
6 |
from enum import Enum
|
7 |
-
from datetime import datetime
|
8 |
import torch
|
9 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
10 |
import traceback
|
11 |
|
12 |
-
|
13 |
-
from src.envs import API, OWNER, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, RESULTS_REPO, QUEUE_REPO
|
14 |
from src.evaluator.tunisian_corpus_coverage import evaluate_tunisian_corpus_coverage
|
15 |
from src.evaluator.tsac import evaluate_tsac_sentiment
|
16 |
-
from huggingface_hub import snapshot_download
|
17 |
|
18 |
|
19 |
class EvaluationStatus(Enum):
|
@@ -121,7 +118,34 @@ def evaluate_model(model_name: str, revision: str, precision: str, weight_type:
|
|
121 |
error=error_msg
|
122 |
)
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
def process_evaluation_queue():
|
126 |
"""
|
127 |
Processes all pending evaluations in the queue.
|
@@ -130,22 +154,6 @@ def process_evaluation_queue():
|
|
130 |
"""
|
131 |
print(f"\n=== Starting evaluation queue processing ===")
|
132 |
print(f"Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
133 |
-
|
134 |
-
# --- NEW STEP: Download the latest queue from Hugging Face Hub ---
|
135 |
-
try:
|
136 |
-
print(f"Downloading evaluation requests from: {QUEUE_REPO}")
|
137 |
-
snapshot_download(
|
138 |
-
repo_id=QUEUE_REPO,
|
139 |
-
repo_type="dataset",
|
140 |
-
local_dir=EVAL_REQUESTS_PATH,
|
141 |
-
local_dir_use_symlinks=False,
|
142 |
-
token=API.token
|
143 |
-
)
|
144 |
-
print("Successfully downloaded evaluation queue.")
|
145 |
-
except Exception as e:
|
146 |
-
print(f"Error downloading evaluation queue: {str(e)}")
|
147 |
-
print(f"Full traceback: {traceback.format_exc()}")
|
148 |
-
return
|
149 |
|
150 |
print(f"Looking for evaluation requests in: {EVAL_REQUESTS_PATH}")
|
151 |
|
@@ -163,7 +171,8 @@ def process_evaluation_queue():
|
|
163 |
with open(file_path, 'r') as f:
|
164 |
eval_entry = json.load(f)
|
165 |
|
166 |
-
status = eval_entry.get('status', '')
|
|
|
167 |
|
168 |
if status == EvaluationStatus.PENDING.value:
|
169 |
print(f"Found pending evaluation for model: {eval_entry['model']}")
|
@@ -194,6 +203,7 @@ def process_evaluation_queue():
|
|
194 |
precision=eval_entry['precision'],
|
195 |
weight_type=eval_entry['weight_type']
|
196 |
)
|
|
|
197 |
print("\n=== Evaluation completed ===")
|
198 |
|
199 |
# --- Step 3: Update file with final status and results locally ---
|
@@ -238,7 +248,9 @@ def process_evaluation_queue():
|
|
238 |
print(f"Final status for {eval_entry['model']} updated in the queue repository.")
|
239 |
except Exception as status_update_error:
|
240 |
print(f"Error updating status in queue: {str(status_update_error)}")
|
241 |
-
|
|
|
|
|
242 |
else:
|
243 |
print(f"Skipping file with status: {status}")
|
244 |
except Exception as e:
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
from datetime import datetime,timedelta,timezone
|
4 |
+
from typing import Dict
|
5 |
from dataclasses import dataclass
|
6 |
from enum import Enum
|
|
|
7 |
import torch
|
8 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
9 |
import traceback
|
10 |
|
11 |
+
from src.envs import API, OWNER, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, RESULTS_REPO, QUEUE_REPO,TOKEN
|
|
|
12 |
from src.evaluator.tunisian_corpus_coverage import evaluate_tunisian_corpus_coverage
|
13 |
from src.evaluator.tsac import evaluate_tsac_sentiment
|
|
|
14 |
|
15 |
|
16 |
class EvaluationStatus(Enum):
|
|
|
118 |
error=error_msg
|
119 |
)
|
120 |
|
121 |
+
def reset_stale_running_eval(eval_entry,root ,file_path ,filename ,timeout_interval=10):
|
122 |
+
submission = eval_entry.get("submitted_time")
|
123 |
+
try:
|
124 |
+
started = datetime.fromisoformat(submission) # aware datetime
|
125 |
+
except Exception as e:
|
126 |
+
print("Invalid submitted_time format:", submission, e)
|
127 |
+
|
128 |
+
now_utc = datetime.now(timezone.utc)
|
129 |
|
130 |
+
if now_utc - started > timedelta(seconds=timeout_interval):
|
131 |
+
print(f"Timeout detected — resetting {eval_entry['model']} to PENDING")
|
132 |
+
eval_entry["status"] = EvaluationStatus.PENDING.value
|
133 |
+
eval_entry["submitted_time"] = now_utc.isoformat()
|
134 |
+
with open(file_path, 'w') as f:
|
135 |
+
json.dump(eval_entry, f, indent=2)
|
136 |
+
API.upload_file(
|
137 |
+
path_or_fileobj=file_path,
|
138 |
+
path_in_repo=os.path.join(os.path.basename(root), filename),
|
139 |
+
repo_id=QUEUE_REPO,
|
140 |
+
repo_type="dataset",
|
141 |
+
commit_message=f"Update status to PENDING for {eval_entry['model']} (timeout)",
|
142 |
+
token=TOKEN
|
143 |
+
)
|
144 |
+
return
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
def process_evaluation_queue():
|
150 |
"""
|
151 |
Processes all pending evaluations in the queue.
|
|
|
154 |
"""
|
155 |
print(f"\n=== Starting evaluation queue processing ===")
|
156 |
print(f"Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
print(f"Looking for evaluation requests in: {EVAL_REQUESTS_PATH}")
|
159 |
|
|
|
171 |
with open(file_path, 'r') as f:
|
172 |
eval_entry = json.load(f)
|
173 |
|
174 |
+
status = eval_entry.get('status', '')
|
175 |
+
|
176 |
|
177 |
if status == EvaluationStatus.PENDING.value:
|
178 |
print(f"Found pending evaluation for model: {eval_entry['model']}")
|
|
|
203 |
precision=eval_entry['precision'],
|
204 |
weight_type=eval_entry['weight_type']
|
205 |
)
|
206 |
+
|
207 |
print("\n=== Evaluation completed ===")
|
208 |
|
209 |
# --- Step 3: Update file with final status and results locally ---
|
|
|
248 |
print(f"Final status for {eval_entry['model']} updated in the queue repository.")
|
249 |
except Exception as status_update_error:
|
250 |
print(f"Error updating status in queue: {str(status_update_error)}")
|
251 |
+
elif status == EvaluationStatus.RUNNING.value:
|
252 |
+
print("Found Running evaluation for model: ", eval_entry['model'])
|
253 |
+
reset_stale_running_eval(eval_entry, root, file_path, filename)
|
254 |
else:
|
255 |
print(f"Skipping file with status: {status}")
|
256 |
except Exception as e:
|
src/evaluator/run_evaluator.py
CHANGED
@@ -16,12 +16,12 @@ def main():
|
|
16 |
while True:
|
17 |
try:
|
18 |
process_evaluation_queue()
|
19 |
-
print("Evaluation queue processed. Sleeping for
|
20 |
-
time.sleep(
|
21 |
except Exception as e:
|
22 |
print(f"Error in evaluation process: {e}")
|
23 |
-
print("Retrying in
|
24 |
-
time.sleep(
|
25 |
|
26 |
if __name__ == "__main__":
|
27 |
main()
|
|
|
16 |
while True:
|
17 |
try:
|
18 |
process_evaluation_queue()
|
19 |
+
print("Evaluation queue processed. Sleeping for 3 minutes...")
|
20 |
+
time.sleep(180) # Sleep for 3 minutes
|
21 |
except Exception as e:
|
22 |
print(f"Error in evaluation process: {e}")
|
23 |
+
print("Retrying in 3 minutes...")
|
24 |
+
time.sleep(180)
|
25 |
|
26 |
if __name__ == "__main__":
|
27 |
main()
|
src/submission/submit.py
CHANGED
@@ -61,11 +61,14 @@ def _create_eval_request(
|
|
61 |
# Use a try-finally block to ensure the local file is always removed
|
62 |
try:
|
63 |
with open(local_path, 'w') as f:
|
|
|
64 |
json.dump(request_data, f, indent=2)
|
65 |
|
66 |
# Upload the request file to the Hugging Face queue repository
|
67 |
print(f"Uploading evaluation request to {QUEUE_REPO}")
|
68 |
path_in_repo = os.path.join(user_name, request_filename)
|
|
|
|
|
69 |
API.upload_file(
|
70 |
path_or_fileobj=local_path,
|
71 |
path_in_repo=path_in_repo,
|
@@ -127,6 +130,7 @@ def add_new_eval(model: str, base_model: str, revision: str, precision: str, wei
|
|
127 |
print(f"Error reading queue file: {e}")
|
128 |
print(f"Full traceback:\n{traceback.format_exc()}")
|
129 |
return styled_warning("Error checking model status. Please try again later.")
|
|
|
130 |
print(f"No existing submission found for key: {model_key} or previous submission had a FAILED status.")
|
131 |
|
132 |
# --- Step 2: Validate model type and existence on the Hub ---
|
|
|
61 |
# Use a try-finally block to ensure the local file is always removed
|
62 |
try:
|
63 |
with open(local_path, 'w') as f:
|
64 |
+
print(request_data)
|
65 |
json.dump(request_data, f, indent=2)
|
66 |
|
67 |
# Upload the request file to the Hugging Face queue repository
|
68 |
print(f"Uploading evaluation request to {QUEUE_REPO}")
|
69 |
path_in_repo = os.path.join(user_name, request_filename)
|
70 |
+
print(path_in_repo)
|
71 |
+
print(local_path)
|
72 |
API.upload_file(
|
73 |
path_or_fileobj=local_path,
|
74 |
path_in_repo=path_in_repo,
|
|
|
130 |
print(f"Error reading queue file: {e}")
|
131 |
print(f"Full traceback:\n{traceback.format_exc()}")
|
132 |
return styled_warning("Error checking model status. Please try again later.")
|
133 |
+
|
134 |
print(f"No existing submission found for key: {model_key} or previous submission had a FAILED status.")
|
135 |
|
136 |
# --- Step 2: Validate model type and existence on the Hub ---
|