#This is an example that uses the websockets api and the SaveImageWebsocket node to get images directly without #them being saved to disk import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client) import uuid import json import urllib.request import urllib.parse import json server_address = "116.103.227.252:7864" client_id = str(uuid.uuid4()) def queue_prompt(prompt): p = {"prompt": prompt, "client_id": client_id} data = json.dumps(p).encode('utf-8') req = urllib.request.Request("http://{}/prompt".format(server_address), data=data) return json.loads(urllib.request.urlopen(req).read()) def get_image(filename, subfolder, folder_type): data = {"filename": filename, "subfolder": subfolder, "type": folder_type} url_values = urllib.parse.urlencode(data) with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response: return response.read() def get_history(prompt_id): with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response: return json.loads(response.read()) def get_images(ws, prompt): prompt_id = queue_prompt(prompt)['prompt_id'] output_images = {} while True: out = ws.recv() if isinstance(out, str): message = json.loads(out) if message['type'] == 'executing': data = message['data'] if data['node'] is None and data['prompt_id'] == prompt_id: break #Execution is done else: # If you want to be able to decode the binary stream for latent previews, here is how you can do it: # bytesIO = BytesIO(out[8:]) # preview_image = Image.open(bytesIO) # This is your preview in PIL image format, store it in a global continue #previews are binary data history = get_history(prompt_id)[prompt_id] for node_id in history['outputs']: node_output = history['outputs'][node_id] images_output = [] if 'images' in node_output: for image in node_output['images']: image_data = get_image(image['filename'], image['subfolder'], image['type']) images_output.append(image_data) output_images[node_id] = images_output return output_images def query_sd35(ckpt_name: str = "sd3.5_medium.safetensors", prompt: str = "a capybara", negative_prompt: str = "ugly, disfigured, deformed", width: int = 1024, height: int = 1024, batch_size: int = 1, seed: int = 77498386, cfg: float = 3.0, step: int = 20): with open('stuffs/comfyui_workflow_api/sd3_5_workflow_api.json') as f: prompt_config = json.load(f) prompt_config["3"]["inputs"]["seed"] = seed prompt_config["3"]["inputs"]["cfg"] = cfg prompt_config["3"]["inputs"]["step"] = step prompt_config["4"]["inputs"]["ckpt_name"] = ckpt_name prompt_config["16"]["inputs"]["text"] = prompt prompt_config["40"]["inputs"]["text"] = negative_prompt prompt_config["53"]["inputs"]["width"] = width prompt_config["53"]["inputs"]["height"] = height prompt_config["53"]["inputs"]["batch_size"] = batch_size ws = websocket.WebSocket() ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id)) images = get_images(ws, prompt_config) ws.close() # for in case this example is used in an environment where it will be repeatedly called, like in a Gradio app. otherwise, you'll randomly receive connection timeouts #Commented out code to display the output images: output_images = [] for node_id in images: for image_data in images[node_id]: from PIL import Image import io output_images.append(Image.open(io.BytesIO(image_data))) return output_images # query_sd35(prompt="a cat")