#-*- encoding: utf-8 -*- import gradio as gr from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np from PIL import Image import tensorflow as tf from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation feature_extractor = SegformerFeatureExtractor.from_pretrained( "nvidia/segformer-b4-finetuned-cityscapes-1024-1024" ) model = TFSegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b4-finetuned-cityscapes-1024-1024" ) def ade_palette(): """ADE20K palette that maps each class to RGB values.""" return [ [0, 0, 0], # black [140, 140, 140], # gray [95, 0, 255], # purple [221, 126, 255], # light purple [1, 0, 255], # blue [0, 216, 255], # light blue [35, 164, 26], # green [29, 219, 22], # light green [255, 228, 0], # yellow [255, 187, 0], # light orange [255, 94, 0], # orange [255, 0, 0], # red [255, 167, 167], # pink [153, 56, 0], # brown [207, 166, 54], [180, 40, 180], [120, 56, 123], [45, 56, 28], [67, 56, 123], ] labels_list = [] with open(r'labels.txt', 'r') as fp: for line in fp: labels_list.append(line[:-1]) colormap = np.asarray(ade_palette()) def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] def draw_plot(pred_img, seg): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg.numpy().astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=25) return fig def sepia(input_img): input_img = Image.fromarray(input_img) inputs = feature_extractor(images=input_img, return_tensors="tf") outputs = model(**inputs) logits = outputs.logits logits = tf.transpose(logits, [0, 2, 3, 1]) logits = tf.image.resize( logits, input_img.size[::-1] ) # We reverse the shape of `image` because `image.size` returns width and height. seg = tf.math.argmax(logits, axis=-1)[0] color_seg = np.zeros( (seg.shape[0], seg.shape[1], 3), dtype=np.uint8 ) # height, width, 3 for label, color in enumerate(colormap): color_seg[seg.numpy() == label, :] = color # Show image + mask pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 pred_img = pred_img.astype(np.uint8) fig = draw_plot(pred_img, seg) return fig with gr.Blocks(theme=gr.themes.Monochrome()) as demo: with gr.Tab("Semantic Segmentation with Cityscape Image"): with gr.Row(): with gr.Column(scale=1): input_image = gr.Image(label="Upload Image") process_button = gr.Button("Process Image") with gr.Column(scale=2): output_plot = gr.Plot(label="Segmented Image") examples_gallery = gr.Gallery( ["city_1.jpg", "city_2.jpg", "city_3.jpg", "city_4.jpg", "city_5.jpg", "city_6.jpg", "city_7.jpg", "city_8.jpg"] ).style(grid=3) examples_gallery.click(sepia, inputs=input_image, outputs=output_plot) process_button.click(sepia, inputs=input_image, outputs=output_plot) with gr.Accordion("Details and Information"): gr.Markdown("A Gradio-based page which performs Semantic Segmentation into 19 classes for an example image") demo.launch()