from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd from src.about import Tasks def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False @dataclass class AutoEvalColumn: model_type_symbol = ColumnContent("model_type_symbol", "str", True, never_hidden=True) model = ColumnContent("model", "markdown", True, never_hidden=True) average = ColumnContent("average", "number", True) anli = ColumnContent("ANLI", "number", True) logiqa = ColumnContent("LogiQA", "number", True) model_type = ColumnContent("model_type", "str", False) architecture = ColumnContent("architecture", "str", False) weight_type = ColumnContent("weight_type", "str", False, True) precision = ColumnContent("precision", "str", False) license = ColumnContent("license", "str", False) params = ColumnContent("#Params (B)", "number", False) likes = ColumnContent("Hub ❤️", "number", False) still_on_hub = ColumnContent("Available on the hub", "bool", False) revision = ColumnContent("Model sha", "str", False, False) ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) private = ColumnContent("private", "bool", True) precision = ColumnContent("precision", "str", True) weight_type = ColumnContent("weight_type", "str", "Original") status = ColumnContent("status", "str", True) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="🟢") FT = ModelDetails(name="fine-tuned", symbol="🔶") IFT = ModelDetails(name="instruction-tuned", symbol="⭕") RL = ModelDetails(name="RL-tuned", symbol="🟦") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "🔶" in type: return ModelType.FT if "pretrained" in type or "🟢" in type: return ModelType.PT if "RL-tuned" in type or "🟦" in type: return ModelType.RL if "instruction-tuned" in type or "⭕" in type: return ModelType.IFT return ModelType.Unknown class WeightType(Enum): Adapter = ModelDetails("Adapter") Original = ModelDetails("Original") Delta = ModelDetails("Delta") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") float32 = ModelDetails("float32") # qt_8bit = ModelDetails("8bit") # qt_4bit = ModelDetails("4bit") # qt_GPTQ = ModelDetails("GPTQ") Unknown = ModelDetails("?") def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 if precision in ["float32"]: return Precision.float32 # if precision in ["8bit"]: # return Precision.qt_8bit # if precision in ["4bit"]: # return Precision.qt_4bit # if precision in ["GPTQ", "None"]: # return Precision.qt_GPTQ return Precision.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks]