Spaces:
Running
Running
wip
Browse files- app.py +131 -107
- src/display/utils.py +30 -30
- src/envs.py +3 -3
- src/leaderboard/read_evals.py +17 -30
- src/submission/check_validity.py +1 -64
- src/submission/submit.py +6 -56
app.py
CHANGED
@@ -22,7 +22,7 @@ from src.display.utils import (
|
|
22 |
ModelType,
|
23 |
fields,
|
24 |
WeightType,
|
25 |
-
Precision
|
26 |
)
|
27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
@@ -32,18 +32,29 @@ from src.submission.submit import add_new_eval
|
|
32 |
def restart_space():
|
33 |
API.restart_space(repo_id=REPO_ID)
|
34 |
|
|
|
35 |
### Space initialisation
|
36 |
try:
|
37 |
print(EVAL_REQUESTS_PATH)
|
38 |
snapshot_download(
|
39 |
-
repo_id=QUEUE_REPO,
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
except Exception:
|
42 |
restart_space()
|
43 |
try:
|
44 |
print(EVAL_RESULTS_PATH)
|
45 |
snapshot_download(
|
46 |
-
repo_id=RESULTS_REPO,
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
except Exception:
|
49 |
restart_space()
|
@@ -57,6 +68,7 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
57 |
pending_eval_queue_df,
|
58 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
|
|
60 |
def init_leaderboard(dataframe):
|
61 |
if dataframe is None or dataframe.empty:
|
62 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
@@ -80,125 +92,137 @@ def init_leaderboard(dataframe):
|
|
80 |
max=150,
|
81 |
label="Select the number of parameters (B)",
|
82 |
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
],
|
87 |
bool_checkboxgroup_label="Hide models",
|
88 |
interactive=False,
|
89 |
)
|
90 |
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
with gr.Accordion(
|
111 |
-
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
112 |
-
open=False,
|
113 |
-
):
|
114 |
-
with gr.Row():
|
115 |
-
finished_eval_table = gr.components.Dataframe(
|
116 |
-
value=finished_eval_queue_df,
|
117 |
-
headers=EVAL_COLS,
|
118 |
-
datatype=EVAL_TYPES,
|
119 |
-
row_count=5,
|
120 |
-
)
|
121 |
-
with gr.Accordion(
|
122 |
-
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
123 |
-
open=False,
|
124 |
-
):
|
125 |
with gr.Row():
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
headers=EVAL_COLS,
|
141 |
-
datatype=EVAL_TYPES,
|
142 |
-
row_count=5,
|
143 |
)
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
with gr.Row():
|
148 |
-
with gr.
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
value=None,
|
156 |
-
interactive=True,
|
157 |
)
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
weight_type = gr.Dropdown(
|
168 |
-
choices=[i.value.name for i in WeightType],
|
169 |
-
label="Weights type",
|
170 |
-
multiselect=False,
|
171 |
-
value="Original",
|
172 |
-
interactive=True,
|
173 |
-
)
|
174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
-
|
176 |
-
submit_button = gr.Button("Submit Eval")
|
177 |
-
submission_result = gr.Markdown()
|
178 |
-
submit_button.click(
|
179 |
-
add_new_eval,
|
180 |
-
[
|
181 |
-
model_name_textbox,
|
182 |
-
base_model_name_textbox,
|
183 |
-
revision_name_textbox,
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
-
model_type,
|
187 |
-
],
|
188 |
-
submission_result,
|
189 |
-
)
|
190 |
-
|
191 |
-
with gr.Row():
|
192 |
-
with gr.Accordion("π Citation", open=False):
|
193 |
-
citation_button = gr.Textbox(
|
194 |
-
value=CITATION_BUTTON_TEXT,
|
195 |
-
label=CITATION_BUTTON_LABEL,
|
196 |
-
lines=20,
|
197 |
-
elem_id="citation-button",
|
198 |
-
show_copy_button=True,
|
199 |
-
)
|
200 |
|
201 |
scheduler = BackgroundScheduler()
|
202 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
22 |
ModelType,
|
23 |
fields,
|
24 |
WeightType,
|
25 |
+
Precision,
|
26 |
)
|
27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
32 |
def restart_space():
|
33 |
API.restart_space(repo_id=REPO_ID)
|
34 |
|
35 |
+
|
36 |
### Space initialisation
|
37 |
try:
|
38 |
print(EVAL_REQUESTS_PATH)
|
39 |
snapshot_download(
|
40 |
+
repo_id=QUEUE_REPO,
|
41 |
+
local_dir=EVAL_REQUESTS_PATH,
|
42 |
+
repo_type="dataset",
|
43 |
+
tqdm_class=None,
|
44 |
+
etag_timeout=30,
|
45 |
+
token=TOKEN,
|
46 |
)
|
47 |
except Exception:
|
48 |
restart_space()
|
49 |
try:
|
50 |
print(EVAL_RESULTS_PATH)
|
51 |
snapshot_download(
|
52 |
+
repo_id=RESULTS_REPO,
|
53 |
+
local_dir=EVAL_RESULTS_PATH,
|
54 |
+
repo_type="dataset",
|
55 |
+
tqdm_class=None,
|
56 |
+
etag_timeout=30,
|
57 |
+
token=TOKEN,
|
58 |
)
|
59 |
except Exception:
|
60 |
restart_space()
|
|
|
68 |
pending_eval_queue_df,
|
69 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
70 |
|
71 |
+
|
72 |
def init_leaderboard(dataframe):
|
73 |
if dataframe is None or dataframe.empty:
|
74 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
92 |
max=150,
|
93 |
label="Select the number of parameters (B)",
|
94 |
),
|
95 |
+
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
|
|
|
|
|
96 |
],
|
97 |
bool_checkboxgroup_label="Hide models",
|
98 |
interactive=False,
|
99 |
)
|
100 |
|
101 |
|
102 |
+
def show_leaderboard(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None):
|
103 |
+
global demo
|
104 |
+
|
105 |
+
if profile or True:
|
106 |
+
print(f"Logged in as {profile.name}")
|
107 |
+
with demo:
|
108 |
+
gr.HTML(TITLE)
|
109 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
110 |
+
|
111 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
112 |
+
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
113 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
114 |
+
|
115 |
+
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
116 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
117 |
+
|
118 |
+
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
119 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
with gr.Row():
|
121 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
122 |
+
|
123 |
+
with gr.Column():
|
124 |
+
with gr.Accordion(
|
125 |
+
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
126 |
+
open=False,
|
127 |
+
):
|
128 |
+
with gr.Row():
|
129 |
+
finished_eval_table = gr.components.Dataframe(
|
130 |
+
value=finished_eval_queue_df,
|
131 |
+
headers=EVAL_COLS,
|
132 |
+
datatype=EVAL_TYPES,
|
133 |
+
row_count=5,
|
134 |
+
)
|
135 |
+
with gr.Accordion(
|
136 |
+
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
137 |
+
open=False,
|
138 |
+
):
|
139 |
+
with gr.Row():
|
140 |
+
running_eval_table = gr.components.Dataframe(
|
141 |
+
value=running_eval_queue_df,
|
142 |
+
headers=EVAL_COLS,
|
143 |
+
datatype=EVAL_TYPES,
|
144 |
+
row_count=5,
|
145 |
+
)
|
146 |
+
|
147 |
+
with gr.Accordion(
|
148 |
+
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
149 |
+
open=False,
|
150 |
+
):
|
151 |
+
with gr.Row():
|
152 |
+
pending_eval_table = gr.components.Dataframe(
|
153 |
+
value=pending_eval_queue_df,
|
154 |
+
headers=EVAL_COLS,
|
155 |
+
datatype=EVAL_TYPES,
|
156 |
+
row_count=5,
|
157 |
+
)
|
158 |
+
with gr.Row():
|
159 |
+
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
160 |
+
|
161 |
+
with gr.Row():
|
162 |
+
with gr.Column():
|
163 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
164 |
+
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
165 |
+
model_type = gr.Dropdown(
|
166 |
+
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
167 |
+
label="Model type",
|
168 |
+
multiselect=False,
|
169 |
+
value=None,
|
170 |
+
interactive=True,
|
171 |
)
|
172 |
|
173 |
+
with gr.Column():
|
174 |
+
precision = gr.Dropdown(
|
175 |
+
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
176 |
+
label="Precision",
|
177 |
+
multiselect=False,
|
178 |
+
value="float16",
|
179 |
+
interactive=True,
|
|
|
|
|
|
|
180 |
)
|
181 |
+
weight_type = gr.Dropdown(
|
182 |
+
choices=[i.value.name for i in WeightType],
|
183 |
+
label="Weights type",
|
184 |
+
multiselect=False,
|
185 |
+
value="Original",
|
186 |
+
interactive=True,
|
187 |
+
)
|
188 |
+
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
189 |
+
|
190 |
+
submit_button = gr.Button("Submit Eval")
|
191 |
+
submission_result = gr.Markdown()
|
192 |
+
# submit_button.click(
|
193 |
+
# add_new_eval,
|
194 |
+
# [
|
195 |
+
# model_name_textbox,
|
196 |
+
# base_model_name_textbox,
|
197 |
+
# revision_name_textbox,
|
198 |
+
# precision,
|
199 |
+
# weight_type,
|
200 |
+
# model_type,
|
201 |
+
# ],
|
202 |
+
# submission_result,
|
203 |
+
# )
|
204 |
|
205 |
with gr.Row():
|
206 |
+
with gr.Accordion("π Citation", open=False):
|
207 |
+
citation_button = gr.Textbox(
|
208 |
+
value=CITATION_BUTTON_TEXT,
|
209 |
+
label=CITATION_BUTTON_LABEL,
|
210 |
+
lines=20,
|
211 |
+
elem_id="citation-button",
|
212 |
+
show_copy_button=True,
|
|
|
|
|
213 |
)
|
214 |
|
215 |
+
|
216 |
+
demo = gr.Blocks(css=custom_css)
|
217 |
+
|
218 |
+
with demo:
|
219 |
+
gr.LoginButton()
|
220 |
+
m1 = gr.Markdown("Please login to see the leaderboard.")
|
221 |
+
demo.load(show_leaderboard, inputs=None, outputs=m1)
|
222 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
scheduler = BackgroundScheduler()
|
225 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
226 |
scheduler.start()
|
227 |
+
# demo.queue(default_concurrency_limit=40).launch()
|
228 |
+
demo.launch()
|
src/display/utils.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
|
|
8 |
def fields(raw_class):
|
9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
|
@@ -20,28 +21,24 @@ class ColumnContent:
|
|
20 |
hidden: bool = False
|
21 |
never_hidden: bool = False
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
-
|
43 |
-
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
-
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
45 |
|
46 |
## For the queue columns in the submission tab
|
47 |
@dataclass(frozen=True)
|
@@ -53,12 +50,13 @@ class EvalQueueColumn: # Queue column
|
|
53 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
54 |
status = ColumnContent("status", "str", True)
|
55 |
|
|
|
56 |
## All the model information that we might need
|
57 |
@dataclass
|
58 |
class ModelDetails:
|
59 |
name: str
|
60 |
display_name: str = ""
|
61 |
-
symbol: str = ""
|
62 |
|
63 |
|
64 |
class ModelType(Enum):
|
@@ -83,18 +81,20 @@ class ModelType(Enum):
|
|
83 |
return ModelType.IFT
|
84 |
return ModelType.Unknown
|
85 |
|
|
|
86 |
class WeightType(Enum):
|
87 |
Adapter = ModelDetails("Adapter")
|
88 |
Original = ModelDetails("Original")
|
89 |
Delta = ModelDetails("Delta")
|
90 |
|
|
|
91 |
class Precision(Enum):
|
92 |
float16 = ModelDetails("float16")
|
93 |
bfloat16 = ModelDetails("bfloat16")
|
94 |
float32 = ModelDetails("float32")
|
95 |
-
#qt_8bit = ModelDetails("8bit")
|
96 |
-
#qt_4bit = ModelDetails("4bit")
|
97 |
-
#qt_GPTQ = ModelDetails("GPTQ")
|
98 |
Unknown = ModelDetails("?")
|
99 |
|
100 |
def from_str(precision):
|
@@ -104,14 +104,15 @@ class Precision(Enum):
|
|
104 |
return Precision.bfloat16
|
105 |
if precision in ["float32"]:
|
106 |
return Precision.float32
|
107 |
-
#if precision in ["8bit"]:
|
108 |
# return Precision.qt_8bit
|
109 |
-
#if precision in ["4bit"]:
|
110 |
# return Precision.qt_4bit
|
111 |
-
#if precision in ["GPTQ", "None"]:
|
112 |
# return Precision.qt_GPTQ
|
113 |
return Precision.Unknown
|
114 |
|
|
|
115 |
# Column selection
|
116 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
117 |
|
@@ -119,4 +120,3 @@ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
|
119 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
120 |
|
121 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
122 |
-
|
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
8 |
+
|
9 |
def fields(raw_class):
|
10 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
11 |
|
|
|
21 |
hidden: bool = False
|
22 |
never_hidden: bool = False
|
23 |
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class AutoEvalColumn:
|
27 |
+
model_type_symbol = ColumnContent("model_type_symbol", "str", True, never_hidden=True)
|
28 |
+
model = ColumnContent("model", "markdown", True, never_hidden=True)
|
29 |
+
average = ColumnContent("average", "number", True)
|
30 |
+
anli = ColumnContent("ANLI", "number", True)
|
31 |
+
logiqa = ColumnContent("LogiQA", "number", True)
|
32 |
+
model_type = ColumnContent("model_type", "str", False)
|
33 |
+
architecture = ColumnContent("architecture", "str", False)
|
34 |
+
weight_type = ColumnContent("weight_type", "str", False, True)
|
35 |
+
precision = ColumnContent("precision", "str", False)
|
36 |
+
license = ColumnContent("license", "str", False)
|
37 |
+
params = ColumnContent("#Params (B)", "number", False)
|
38 |
+
likes = ColumnContent("Hub β€οΈ", "number", False)
|
39 |
+
still_on_hub = ColumnContent("Available on the hub", "bool", False)
|
40 |
+
revision = ColumnContent("Model sha", "str", False, False)
|
41 |
+
|
|
|
|
|
|
|
|
|
42 |
|
43 |
## For the queue columns in the submission tab
|
44 |
@dataclass(frozen=True)
|
|
|
50 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
51 |
status = ColumnContent("status", "str", True)
|
52 |
|
53 |
+
|
54 |
## All the model information that we might need
|
55 |
@dataclass
|
56 |
class ModelDetails:
|
57 |
name: str
|
58 |
display_name: str = ""
|
59 |
+
symbol: str = "" # emoji
|
60 |
|
61 |
|
62 |
class ModelType(Enum):
|
|
|
81 |
return ModelType.IFT
|
82 |
return ModelType.Unknown
|
83 |
|
84 |
+
|
85 |
class WeightType(Enum):
|
86 |
Adapter = ModelDetails("Adapter")
|
87 |
Original = ModelDetails("Original")
|
88 |
Delta = ModelDetails("Delta")
|
89 |
|
90 |
+
|
91 |
class Precision(Enum):
|
92 |
float16 = ModelDetails("float16")
|
93 |
bfloat16 = ModelDetails("bfloat16")
|
94 |
float32 = ModelDetails("float32")
|
95 |
+
# qt_8bit = ModelDetails("8bit")
|
96 |
+
# qt_4bit = ModelDetails("4bit")
|
97 |
+
# qt_GPTQ = ModelDetails("GPTQ")
|
98 |
Unknown = ModelDetails("?")
|
99 |
|
100 |
def from_str(precision):
|
|
|
104 |
return Precision.bfloat16
|
105 |
if precision in ["float32"]:
|
106 |
return Precision.float32
|
107 |
+
# if precision in ["8bit"]:
|
108 |
# return Precision.qt_8bit
|
109 |
+
# if precision in ["4bit"]:
|
110 |
# return Precision.qt_4bit
|
111 |
+
# if precision in ["GPTQ", "None"]:
|
112 |
# return Precision.qt_GPTQ
|
113 |
return Precision.Unknown
|
114 |
|
115 |
+
|
116 |
# Column selection
|
117 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
118 |
|
|
|
120 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
121 |
|
122 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
|
src/envs.py
CHANGED
@@ -4,9 +4,9 @@ from huggingface_hub import HfApi
|
|
4 |
|
5 |
# Info to change for your repository
|
6 |
# ----------------------------------
|
7 |
-
TOKEN = os.environ.get("TOKEN")
|
8 |
|
9 |
-
OWNER = "
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/leaderboard"
|
@@ -14,7 +14,7 @@ QUEUE_REPO = f"{OWNER}/requests"
|
|
14 |
RESULTS_REPO = f"{OWNER}/results"
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
|
19 |
# Local caches
|
20 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
|
|
4 |
|
5 |
# Info to change for your repository
|
6 |
# ----------------------------------
|
7 |
+
TOKEN = os.environ.get("TOKEN") # A read/write token for your org
|
8 |
|
9 |
+
OWNER = "ttsds" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/leaderboard"
|
|
|
14 |
RESULTS_REPO = f"{OWNER}/results"
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
+
CACHE_PATH = os.getenv("HF_HOME", ".")
|
18 |
|
19 |
# Local caches
|
20 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
src/leaderboard/read_evals.py
CHANGED
@@ -9,27 +9,26 @@ import numpy as np
|
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
12 |
-
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
15 |
@dataclass
|
16 |
class EvalResult:
|
17 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
18 |
-
|
19 |
-
eval_name: str
|
20 |
-
full_model: str
|
21 |
-
org: str
|
22 |
model: str
|
23 |
-
revision: str
|
24 |
results: dict
|
25 |
precision: Precision = Precision.Unknown
|
26 |
-
model_type: ModelType = ModelType.Unknown
|
27 |
-
weight_type: WeightType = WeightType.Original
|
28 |
-
architecture: str = "Unknown"
|
29 |
license: str = "?"
|
30 |
likes: int = 0
|
31 |
num_params: int = 0
|
32 |
-
date: str = ""
|
33 |
still_on_hub: bool = False
|
34 |
|
35 |
@classmethod
|
@@ -57,15 +56,6 @@ class EvalResult:
|
|
57 |
result_key = f"{org}_{model}_{precision.value.name}"
|
58 |
full_model = "/".join(org_and_model)
|
59 |
|
60 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
61 |
-
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
62 |
-
)
|
63 |
-
architecture = "?"
|
64 |
-
if model_config is not None:
|
65 |
-
architectures = getattr(model_config, "architectures", None)
|
66 |
-
if architectures:
|
67 |
-
architecture = ";".join(architectures)
|
68 |
-
|
69 |
# Extract results available in this file (some results are split in several files)
|
70 |
results = {}
|
71 |
for task in Tasks:
|
@@ -85,10 +75,8 @@ class EvalResult:
|
|
85 |
org=org,
|
86 |
model=model,
|
87 |
results=results,
|
88 |
-
precision=precision,
|
89 |
-
revision=
|
90 |
-
still_on_hub=still_on_hub,
|
91 |
-
architecture=architecture
|
92 |
)
|
93 |
|
94 |
def update_with_request_file(self, requests_path):
|
@@ -105,7 +93,9 @@ class EvalResult:
|
|
105 |
self.num_params = request.get("params", 0)
|
106 |
self.date = request.get("submitted_time", "")
|
107 |
except Exception:
|
108 |
-
print(
|
|
|
|
|
109 |
|
110 |
def to_dict(self):
|
111 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
@@ -146,10 +136,7 @@ def get_request_file_for_model(requests_path, model_name, precision):
|
|
146 |
for tmp_request_file in request_files:
|
147 |
with open(tmp_request_file, "r") as f:
|
148 |
req_content = json.load(f)
|
149 |
-
if (
|
150 |
-
req_content["status"] in ["FINISHED"]
|
151 |
-
and req_content["precision"] == precision.split(".")[-1]
|
152 |
-
):
|
153 |
request_file = tmp_request_file
|
154 |
return request_file
|
155 |
|
@@ -188,7 +175,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
188 |
results = []
|
189 |
for v in eval_results.values():
|
190 |
try:
|
191 |
-
v.to_dict()
|
192 |
results.append(v)
|
193 |
except KeyError: # not all eval values present
|
194 |
continue
|
|
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
|
|
12 |
|
13 |
|
14 |
@dataclass
|
15 |
class EvalResult:
|
16 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
|
17 |
+
|
18 |
+
eval_name: str # org_model_precision (uid)
|
19 |
+
full_model: str # org/model (path on hub)
|
20 |
+
org: str
|
21 |
model: str
|
22 |
+
revision: str # commit hash, "" if main
|
23 |
results: dict
|
24 |
precision: Precision = Precision.Unknown
|
25 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
26 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
27 |
+
architecture: str = "Unknown"
|
28 |
license: str = "?"
|
29 |
likes: int = 0
|
30 |
num_params: int = 0
|
31 |
+
date: str = "" # submission date of request file
|
32 |
still_on_hub: bool = False
|
33 |
|
34 |
@classmethod
|
|
|
56 |
result_key = f"{org}_{model}_{precision.value.name}"
|
57 |
full_model = "/".join(org_and_model)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Extract results available in this file (some results are split in several files)
|
60 |
results = {}
|
61 |
for task in Tasks:
|
|
|
75 |
org=org,
|
76 |
model=model,
|
77 |
results=results,
|
78 |
+
precision=precision,
|
79 |
+
revision=config.get("model_sha", ""),
|
|
|
|
|
80 |
)
|
81 |
|
82 |
def update_with_request_file(self, requests_path):
|
|
|
93 |
self.num_params = request.get("params", 0)
|
94 |
self.date = request.get("submitted_time", "")
|
95 |
except Exception:
|
96 |
+
print(
|
97 |
+
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
|
98 |
+
)
|
99 |
|
100 |
def to_dict(self):
|
101 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
136 |
for tmp_request_file in request_files:
|
137 |
with open(tmp_request_file, "r") as f:
|
138 |
req_content = json.load(f)
|
139 |
+
if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
|
|
|
|
|
|
|
140 |
request_file = tmp_request_file
|
141 |
return request_file
|
142 |
|
|
|
175 |
results = []
|
176 |
for v in eval_results.values():
|
177 |
try:
|
178 |
+
v.to_dict() # we test if the dict version is complete
|
179 |
results.append(v)
|
180 |
except KeyError: # not all eval values present
|
181 |
continue
|
src/submission/check_validity.py
CHANGED
@@ -10,69 +10,6 @@ from huggingface_hub.hf_api import ModelInfo
|
|
10 |
from transformers import AutoConfig
|
11 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
|
13 |
-
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
14 |
-
"""Checks if the model card and license exist and have been filled"""
|
15 |
-
try:
|
16 |
-
card = ModelCard.load(repo_id)
|
17 |
-
except huggingface_hub.utils.EntryNotFoundError:
|
18 |
-
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
19 |
-
|
20 |
-
# Enforce license metadata
|
21 |
-
if card.data.license is None:
|
22 |
-
if not ("license_name" in card.data and "license_link" in card.data):
|
23 |
-
return False, (
|
24 |
-
"License not found. Please add a license to your model card using the `license` metadata or a"
|
25 |
-
" `license_name`/`license_link` pair."
|
26 |
-
)
|
27 |
-
|
28 |
-
# Enforce card content
|
29 |
-
if len(card.text) < 200:
|
30 |
-
return False, "Please add a description to your model card, it is too short."
|
31 |
-
|
32 |
-
return True, ""
|
33 |
-
|
34 |
-
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
35 |
-
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
36 |
-
try:
|
37 |
-
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
38 |
-
if test_tokenizer:
|
39 |
-
try:
|
40 |
-
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
41 |
-
except ValueError as e:
|
42 |
-
return (
|
43 |
-
False,
|
44 |
-
f"uses a tokenizer which is not in a transformers release: {e}",
|
45 |
-
None
|
46 |
-
)
|
47 |
-
except Exception as e:
|
48 |
-
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
49 |
-
return True, None, config
|
50 |
-
|
51 |
-
except ValueError:
|
52 |
-
return (
|
53 |
-
False,
|
54 |
-
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
55 |
-
None
|
56 |
-
)
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
return False, "was not found on hub!", None
|
60 |
-
|
61 |
-
|
62 |
-
def get_model_size(model_info: ModelInfo, precision: str):
|
63 |
-
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
64 |
-
try:
|
65 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
-
except (AttributeError, TypeError):
|
67 |
-
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
68 |
-
|
69 |
-
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
-
model_size = size_factor * model_size
|
71 |
-
return model_size
|
72 |
-
|
73 |
-
def get_model_arch(model_info: ModelInfo):
|
74 |
-
"""Gets the model architecture from the configuration"""
|
75 |
-
return model_info.config.get("architectures", "Unknown")
|
76 |
|
77 |
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
78 |
"""Gather a list of already submitted models to avoid duplicates"""
|
@@ -88,7 +25,7 @@ def already_submitted_models(requested_models_dir: str) -> set[str]:
|
|
88 |
continue
|
89 |
with open(os.path.join(root, file), "r") as f:
|
90 |
info = json.load(f)
|
91 |
-
file_names.append(f"{info['model']}_{info['revision']}
|
92 |
|
93 |
# Select organisation
|
94 |
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
|
|
10 |
from transformers import AutoConfig
|
11 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
15 |
"""Gather a list of already submitted models to avoid duplicates"""
|
|
|
25 |
continue
|
26 |
with open(os.path.join(root, file), "r") as f:
|
27 |
info = json.load(f)
|
28 |
+
file_names.append(f"{info['model']}_{info['revision']}")
|
29 |
|
30 |
# Select organisation
|
31 |
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
src/submission/submit.py
CHANGED
@@ -4,23 +4,16 @@ from datetime import datetime, timezone
|
|
4 |
|
5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
-
from src.submission.check_validity import
|
8 |
-
|
9 |
-
check_model_card,
|
10 |
-
get_model_size,
|
11 |
-
is_model_on_hub,
|
12 |
-
)
|
13 |
|
14 |
REQUESTED_MODELS = None
|
15 |
USERS_TO_SUBMISSION_DATES = None
|
16 |
|
|
|
17 |
def add_new_eval(
|
18 |
model: str,
|
19 |
-
base_model: str,
|
20 |
revision: str,
|
21 |
-
precision: str,
|
22 |
-
weight_type: str,
|
23 |
-
model_type: str,
|
24 |
):
|
25 |
global REQUESTED_MODELS
|
26 |
global USERS_TO_SUBMISSION_DATES
|
@@ -28,76 +21,33 @@ def add_new_eval(
|
|
28 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
29 |
|
30 |
user_name = ""
|
31 |
-
|
32 |
-
if "/" in model:
|
33 |
-
user_name = model.split("/")[0]
|
34 |
-
model_path = model.split("/")[1]
|
35 |
|
36 |
-
precision = precision.split(" ")[0]
|
37 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
38 |
|
39 |
-
if model_type is None or model_type == "":
|
40 |
-
return styled_error("Please select a model type.")
|
41 |
-
|
42 |
# Does the model actually exist?
|
43 |
if revision == "":
|
44 |
revision = "main"
|
45 |
|
46 |
-
# Is the model on the hub?
|
47 |
-
if weight_type in ["Delta", "Adapter"]:
|
48 |
-
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
49 |
-
if not base_model_on_hub:
|
50 |
-
return styled_error(f'Base model "{base_model}" {error}')
|
51 |
-
|
52 |
-
if not weight_type == "Adapter":
|
53 |
-
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
54 |
-
if not model_on_hub:
|
55 |
-
return styled_error(f'Model "{model}" {error}')
|
56 |
-
|
57 |
-
# Is the model info correctly filled?
|
58 |
-
try:
|
59 |
-
model_info = API.model_info(repo_id=model, revision=revision)
|
60 |
-
except Exception:
|
61 |
-
return styled_error("Could not get your model information. Please fill it up properly.")
|
62 |
-
|
63 |
-
model_size = get_model_size(model_info=model_info, precision=precision)
|
64 |
-
|
65 |
-
# Were the model card and license filled?
|
66 |
-
try:
|
67 |
-
license = model_info.cardData["license"]
|
68 |
-
except Exception:
|
69 |
-
return styled_error("Please select a license for your model")
|
70 |
-
|
71 |
-
modelcard_OK, error_msg = check_model_card(model)
|
72 |
-
if not modelcard_OK:
|
73 |
-
return styled_error(error_msg)
|
74 |
-
|
75 |
# Seems good, creating the eval
|
76 |
print("Adding new eval")
|
77 |
|
78 |
eval_entry = {
|
79 |
"model": model,
|
80 |
-
"base_model": base_model,
|
81 |
"revision": revision,
|
82 |
-
"precision": precision,
|
83 |
-
"weight_type": weight_type,
|
84 |
"status": "PENDING",
|
85 |
"submitted_time": current_time,
|
86 |
-
"model_type": model_type,
|
87 |
-
"likes": model_info.likes,
|
88 |
-
"params": model_size,
|
89 |
-
"license": license,
|
90 |
"private": False,
|
91 |
}
|
92 |
|
93 |
# Check for duplicate submission
|
94 |
-
if f"{model}_{revision}
|
95 |
return styled_warning("This model has been already submitted.")
|
96 |
|
97 |
print("Creating eval file")
|
98 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
99 |
os.makedirs(OUT_DIR, exist_ok=True)
|
100 |
-
out_path = f"{OUT_DIR}/{
|
101 |
|
102 |
with open(out_path, "w") as f:
|
103 |
f.write(json.dumps(eval_entry))
|
|
|
4 |
|
5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
+
from src.submission.check_validity import already_submitted_models
|
8 |
+
|
|
|
|
|
|
|
|
|
9 |
|
10 |
REQUESTED_MODELS = None
|
11 |
USERS_TO_SUBMISSION_DATES = None
|
12 |
|
13 |
+
|
14 |
def add_new_eval(
|
15 |
model: str,
|
|
|
16 |
revision: str,
|
|
|
|
|
|
|
17 |
):
|
18 |
global REQUESTED_MODELS
|
19 |
global USERS_TO_SUBMISSION_DATES
|
|
|
21 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
22 |
|
23 |
user_name = ""
|
24 |
+
model_name = model
|
|
|
|
|
|
|
25 |
|
|
|
26 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
27 |
|
|
|
|
|
|
|
28 |
# Does the model actually exist?
|
29 |
if revision == "":
|
30 |
revision = "main"
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Seems good, creating the eval
|
33 |
print("Adding new eval")
|
34 |
|
35 |
eval_entry = {
|
36 |
"model": model,
|
|
|
37 |
"revision": revision,
|
|
|
|
|
38 |
"status": "PENDING",
|
39 |
"submitted_time": current_time,
|
|
|
|
|
|
|
|
|
40 |
"private": False,
|
41 |
}
|
42 |
|
43 |
# Check for duplicate submission
|
44 |
+
if f"{model}_{revision}" in REQUESTED_MODELS:
|
45 |
return styled_warning("This model has been already submitted.")
|
46 |
|
47 |
print("Creating eval file")
|
48 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
49 |
os.makedirs(OUT_DIR, exist_ok=True)
|
50 |
+
out_path = f"{OUT_DIR}/{model_name}_eval_request_False_{precision}_{weight_type}.json"
|
51 |
|
52 |
with open(out_path, "w") as f:
|
53 |
f.write(json.dumps(eval_entry))
|