|
from typing import Optional |
|
import torch |
|
from torch.nn.utils import remove_weight_norm |
|
from torch.nn.utils.parametrizations import weight_norm |
|
|
|
from rvc.lib.algorithm.modules import WaveNet |
|
from rvc.lib.algorithm.commons import get_padding, init_weights |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
|
|
def create_conv1d_layer(channels, kernel_size, dilation): |
|
return weight_norm( |
|
torch.nn.Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation, |
|
padding=get_padding(kernel_size, dilation), |
|
) |
|
) |
|
|
|
|
|
def apply_mask(tensor, mask): |
|
return tensor * mask if mask is not None else tensor |
|
|
|
|
|
class ResBlockBase(torch.nn.Module): |
|
def __init__(self, channels, kernel_size, dilations): |
|
super(ResBlockBase, self).__init__() |
|
self.convs1 = torch.nn.ModuleList( |
|
[create_conv1d_layer(channels, kernel_size, d) for d in dilations] |
|
) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = torch.nn.ModuleList( |
|
[create_conv1d_layer(channels, kernel_size, 1) for _ in dilations] |
|
) |
|
self.convs2.apply(init_weights) |
|
|
|
def forward(self, x, x_mask=None): |
|
for c1, c2 in zip(self.convs1, self.convs2): |
|
xt = torch.nn.functional.leaky_relu(x, LRELU_SLOPE) |
|
xt = apply_mask(xt, x_mask) |
|
xt = torch.nn.functional.leaky_relu(c1(xt), LRELU_SLOPE) |
|
xt = apply_mask(xt, x_mask) |
|
xt = c2(xt) |
|
x = xt + x |
|
return apply_mask(x, x_mask) |
|
|
|
def remove_weight_norm(self): |
|
for conv in self.convs1 + self.convs2: |
|
remove_weight_norm(conv) |
|
|
|
|
|
class ResBlock1(ResBlockBase): |
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super(ResBlock1, self).__init__(channels, kernel_size, dilation) |
|
|
|
|
|
class ResBlock2(ResBlockBase): |
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)): |
|
super(ResBlock2, self).__init__(channels, kernel_size, dilation) |
|
|
|
|
|
class Log(torch.nn.Module): |
|
"""Logarithm module for flow-based models. |
|
|
|
This module computes the logarithm of the input and its log determinant. |
|
During reverse, it computes the exponential of the input. |
|
""" |
|
|
|
def forward(self, x, x_mask, reverse=False, **kwargs): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
x_mask (torch.Tensor): Mask tensor. |
|
reverse (bool, optional): Whether to reverse the operation. Defaults to False. |
|
""" |
|
if not reverse: |
|
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask |
|
logdet = torch.sum(-y, [1, 2]) |
|
return y, logdet |
|
else: |
|
x = torch.exp(x) * x_mask |
|
return x |
|
|
|
|
|
class Flip(torch.nn.Module): |
|
"""Flip module for flow-based models. |
|
|
|
This module flips the input along the time dimension. |
|
""" |
|
|
|
def forward(self, x, *args, reverse=False, **kwargs): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
reverse (bool, optional): Whether to reverse the operation. Defaults to False. |
|
""" |
|
x = torch.flip(x, [1]) |
|
if not reverse: |
|
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) |
|
return x, logdet |
|
else: |
|
return x |
|
|
|
|
|
class ElementwiseAffine(torch.nn.Module): |
|
"""Elementwise affine transformation module for flow-based models. |
|
|
|
This module performs an elementwise affine transformation on the input. |
|
|
|
Args: |
|
channels (int): Number of channels. |
|
|
|
""" |
|
|
|
def __init__(self, channels): |
|
super().__init__() |
|
self.channels = channels |
|
self.m = torch.nn.Parameter(torch.zeros(channels, 1)) |
|
self.logs = torch.nn.Parameter(torch.zeros(channels, 1)) |
|
|
|
def forward(self, x, x_mask, reverse=False, **kwargs): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
x_mask (torch.Tensor): Mask tensor. |
|
reverse (bool, optional): Whether to reverse the operation. Defaults to False. |
|
""" |
|
if not reverse: |
|
y = self.m + torch.exp(self.logs) * x |
|
y = y * x_mask |
|
logdet = torch.sum(self.logs * x_mask, [1, 2]) |
|
return y, logdet |
|
else: |
|
x = (x - self.m) * torch.exp(-self.logs) * x_mask |
|
return x |
|
|
|
|
|
class ResidualCouplingBlock(torch.nn.Module): |
|
"""Residual Coupling Block for normalizing flow. |
|
|
|
Args: |
|
channels (int): Number of channels in the input. |
|
hidden_channels (int): Number of hidden channels in the coupling layer. |
|
kernel_size (int): Kernel size of the convolutional layers. |
|
dilation_rate (int): Dilation rate of the convolutional layers. |
|
n_layers (int): Number of layers in the coupling layer. |
|
n_flows (int, optional): Number of coupling layers in the block. Defaults to 4. |
|
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
n_flows=4, |
|
gin_channels=0, |
|
): |
|
super(ResidualCouplingBlock, self).__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.n_flows = n_flows |
|
self.gin_channels = gin_channels |
|
|
|
self.flows = torch.nn.ModuleList() |
|
for i in range(n_flows): |
|
self.flows.append( |
|
ResidualCouplingLayer( |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=gin_channels, |
|
mean_only=True, |
|
) |
|
) |
|
self.flows.append(Flip()) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_mask: torch.Tensor, |
|
g: Optional[torch.Tensor] = None, |
|
reverse: bool = False, |
|
): |
|
if not reverse: |
|
for flow in self.flows: |
|
x, _ = flow(x, x_mask, g=g, reverse=reverse) |
|
else: |
|
for flow in self.flows[::-1]: |
|
x = flow.forward(x, x_mask, g=g, reverse=reverse) |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
"""Removes weight normalization from the coupling layers.""" |
|
for i in range(self.n_flows): |
|
self.flows[i * 2].remove_weight_norm() |
|
|
|
def __prepare_scriptable__(self): |
|
"""Prepares the module for scripting.""" |
|
for i in range(self.n_flows): |
|
for hook in self.flows[i * 2]._forward_pre_hooks.values(): |
|
if ( |
|
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" |
|
and hook.__class__.__name__ == "WeightNorm" |
|
): |
|
torch.nn.utils.remove_weight_norm(self.flows[i * 2]) |
|
|
|
return self |
|
|
|
|
|
class ResidualCouplingLayer(torch.nn.Module): |
|
"""Residual coupling layer for flow-based models. |
|
|
|
Args: |
|
channels (int): Number of channels. |
|
hidden_channels (int): Number of hidden channels. |
|
kernel_size (int): Size of the convolutional kernel. |
|
dilation_rate (int): Dilation rate of the convolution. |
|
n_layers (int): Number of convolutional layers. |
|
p_dropout (float, optional): Dropout probability. Defaults to 0. |
|
gin_channels (int, optional): Number of conditioning channels. Defaults to 0. |
|
mean_only (bool, optional): Whether to use mean-only coupling. Defaults to False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
p_dropout=0, |
|
gin_channels=0, |
|
mean_only=False, |
|
): |
|
assert channels % 2 == 0, "channels should be divisible by 2" |
|
super().__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.half_channels = channels // 2 |
|
self.mean_only = mean_only |
|
|
|
self.pre = torch.nn.Conv1d(self.half_channels, hidden_channels, 1) |
|
self.enc = WaveNet( |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
p_dropout=p_dropout, |
|
gin_channels=gin_channels, |
|
) |
|
self.post = torch.nn.Conv1d( |
|
hidden_channels, self.half_channels * (2 - mean_only), 1 |
|
) |
|
self.post.weight.data.zero_() |
|
self.post.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor of shape (batch_size, channels, time_steps). |
|
x_mask (torch.Tensor): Mask tensor of shape (batch_size, 1, time_steps). |
|
g (torch.Tensor, optional): Conditioning tensor of shape (batch_size, gin_channels, time_steps). |
|
Defaults to None. |
|
reverse (bool, optional): Whether to reverse the operation. Defaults to False. |
|
""" |
|
x0, x1 = torch.split(x, [self.half_channels] * 2, 1) |
|
h = self.pre(x0) * x_mask |
|
h = self.enc(h, x_mask, g=g) |
|
stats = self.post(h) * x_mask |
|
if not self.mean_only: |
|
m, logs = torch.split(stats, [self.half_channels] * 2, 1) |
|
else: |
|
m = stats |
|
logs = torch.zeros_like(m) |
|
|
|
if not reverse: |
|
x1 = m + x1 * torch.exp(logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
logdet = torch.sum(logs, [1, 2]) |
|
return x, logdet |
|
else: |
|
x1 = (x1 - m) * torch.exp(-logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
"""Remove weight normalization from the module.""" |
|
self.enc.remove_weight_norm() |
|
|