import streamlit as st import torch import torchaudio import os import numpy as np import base64 from audiocraft.models import MusicGen # Before batch_size = 64 # After batch_size = 32 torch.cuda.empty_cache() genres = ["Pop", "Rock", "Jazz", "Electronic", "Hip-Hop", "Classical", "Lofi", "Chillpop"] @st.cache_resource() def load_model(): model = MusicGen.get_pretrained('facebook/musicgen-small') return model def generate_music_tensors(description, duration: int): model = load_model() model.set_generation_params( use_sampling=True, top_k=250, duration=duration ) with st.spinner("Generating Music..."): output = model.generate( descriptions=description, progress=True, return_tokens=True ) st.success("Music Generation Complete!") return output def save_audio(samples: torch.Tensor): print("Samples (inside function): ", samples) sample_rate = 30000 save_path = "audio_output/" sample= samples[0] assert sample.dim() == 2 or sample.dim() == 3 sample = sample.detach().cpu() if sample.dim() == 2: sample = sample[None, ...] for idx, audio in enumerate(sample): audio_path = os.path.join(save_path, f"audio_{idx}.wav") torchaudio.save(audio_path, audio, sample_rate) def get_binary_file_downloader_html(bin_file, file_label='File'): with open(bin_file, 'rb') as f: data = f.read() bin_str = base64.b64encode(data).decode() href = f'Download {file_label}' return href st.set_page_config( page_icon= "musical_note", page_title= "Music Gen" ) def main(): st.title("🎧 AI Composer Medium-Model 🎧") st.subheader("Craft your perfect melody!") bpm = st.number_input("Enter Speed in BPM", min_value=2) text_area = st.text_area('Ex : 80s rock song with guitar and drums') st.text('') # Dropdown for genres selected_genre = st.selectbox("Select Genre", genres) st.subheader("2. Select time duration (In Seconds)") time_slider = st.slider("Select time duration (In Seconds)", 0, 30, 10) mood = st.selectbox("Select Mood (Optional)", ["Happy", "Sad", "Angry", "Relaxed", "Energetic"], None) instrument = st.selectbox("Select Instrument (Optional)", ["Piano", "Guitar", "Flute", "Violin", "Drums"], None) tempo = st.selectbox("Select Tempo (Optional)", ["Slow", "Moderate", "Fast"], None) melody = st.text_input("Enter Melody or Chord Progression (Optional) e.g: C D:min G:7 C, Twinkle Twinkle Little Star", " ") if st.button('Let\'s Generate 🎶'): st.text('\n\n') st.subheader("Generated Music") # Generate audio description = text_area # Initialize description with text_area if selected_genre: description += f" {selected_genre}" st.empty() # Hide the selected_genre selectbox after selecting one option if bpm: description += f" {bpm} BPM" if mood: description += f" {mood}" st.empty() # Hide the mood selectbox after selecting one option if instrument: description += f" {instrument}" st.empty() # Hide the instrument selectbox after selecting one option if tempo: description += f" {tempo}" st.empty() # Hide the tempo selectbox after selecting one option if melody: description += f" {melody}" # Clear CUDA memory cache before generating music torch.cuda.empty_cache() music_tensors = generate_music_tensors(description, time_slider) # Only play the full audio for index 0 # idx = 0 # music_tensor = music_tensors[idx] # music_tensor = 1 save_audio(music_tensors) audio_filepath = f'audio_output/audio_0.wav' audio_file = open(audio_filepath, 'rb') audio_bytes = audio_file.read() # Play the full audio st.audio(audio_bytes, format='audio/wav') st.markdown(get_binary_file_downloader_html(audio_filepath, f'Audio'), unsafe_allow_html=True) if __name__ == "__main__": main()