add required files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +1 -1
- audioldm/__init__.py +8 -0
- audioldm/__main__.py +183 -0
- audioldm/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/__pycache__/ldm.cpython-39.pyc +0 -0
- audioldm/__pycache__/pipeline.cpython-39.pyc +0 -0
- audioldm/__pycache__/utils.cpython-39.pyc +0 -0
- audioldm/audio/__init__.py +2 -0
- audioldm/audio/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/audio_processing.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/mix.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/stft.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/tools.cpython-39.pyc +0 -0
- audioldm/audio/__pycache__/torch_tools.cpython-39.pyc +0 -0
- audioldm/audio/audio_processing.py +100 -0
- audioldm/audio/stft.py +186 -0
- audioldm/audio/tools.py +85 -0
- audioldm/hifigan/__init__.py +7 -0
- audioldm/hifigan/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/hifigan/__pycache__/models.cpython-39.pyc +0 -0
- audioldm/hifigan/__pycache__/utilities.cpython-39.pyc +0 -0
- audioldm/hifigan/models.py +174 -0
- audioldm/hifigan/utilities.py +86 -0
- audioldm/latent_diffusion/__init__.py +0 -0
- audioldm/latent_diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/attention.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ddim.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ddpm.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ema.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/openaimodel.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/util.cpython-39.pyc +0 -0
- audioldm/latent_diffusion/attention.py +469 -0
- audioldm/latent_diffusion/ddim.py +377 -0
- audioldm/latent_diffusion/ddpm.py +441 -0
- audioldm/latent_diffusion/ema.py +82 -0
- audioldm/latent_diffusion/openaimodel.py +1069 -0
- audioldm/latent_diffusion/util.py +295 -0
- audioldm/ldm.py +818 -0
- audioldm/pipeline.py +301 -0
- audioldm/utils.py +281 -0
- audioldm/variational_autoencoder/__init__.py +1 -0
- audioldm/variational_autoencoder/__pycache__/__init__.cpython-39.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-39.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/distributions.cpython-39.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/modules.cpython-39.pyc +0 -0
- audioldm/variational_autoencoder/autoencoder.py +135 -0
- audioldm/variational_autoencoder/distributions.py +102 -0
- audioldm/variational_autoencoder/modules.py +1066 -0
- diffusers/CITATION.cff +40 -0
- diffusers/CODE_OF_CONDUCT.md +130 -0
app.py
CHANGED
@@ -94,7 +94,7 @@ gr_interface = gr.Interface(
|
|
94 |
inputs=input_text,
|
95 |
outputs=[output_audio],
|
96 |
title="Tango Audio Generator",
|
97 |
-
description="Generate audio using Tango
|
98 |
allow_flagging=False,
|
99 |
examples=[
|
100 |
["A Dog Barking"],
|
|
|
94 |
inputs=input_text,
|
95 |
outputs=[output_audio],
|
96 |
title="Tango Audio Generator",
|
97 |
+
description="Generate audio using Tango by providing a text prompt.",
|
98 |
allow_flagging=False,
|
99 |
examples=[
|
100 |
["A Dog Barking"],
|
audioldm/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ldm import LatentDiffusion
|
2 |
+
from .utils import seed_everything, save_wave, get_time, get_duration
|
3 |
+
from .pipeline import *
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
|
audioldm/__main__.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
import os
|
3 |
+
from audioldm import text_to_audio, style_transfer, build_model, save_wave, get_time, round_up_duration, get_duration
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
CACHE_DIR = os.getenv(
|
7 |
+
"AUDIOLDM_CACHE_DIR",
|
8 |
+
os.path.join(os.path.expanduser("~"), ".cache/audioldm"))
|
9 |
+
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
|
12 |
+
parser.add_argument(
|
13 |
+
"--mode",
|
14 |
+
type=str,
|
15 |
+
required=False,
|
16 |
+
default="generation",
|
17 |
+
help="generation: text-to-audio generation; transfer: style transfer",
|
18 |
+
choices=["generation", "transfer"]
|
19 |
+
)
|
20 |
+
|
21 |
+
parser.add_argument(
|
22 |
+
"-t",
|
23 |
+
"--text",
|
24 |
+
type=str,
|
25 |
+
required=False,
|
26 |
+
default="",
|
27 |
+
help="Text prompt to the model for audio generation",
|
28 |
+
)
|
29 |
+
|
30 |
+
parser.add_argument(
|
31 |
+
"-f",
|
32 |
+
"--file_path",
|
33 |
+
type=str,
|
34 |
+
required=False,
|
35 |
+
default=None,
|
36 |
+
help="(--mode transfer): Original audio file for style transfer; Or (--mode generation): the guidance audio file for generating simialr audio",
|
37 |
+
)
|
38 |
+
|
39 |
+
parser.add_argument(
|
40 |
+
"--transfer_strength",
|
41 |
+
type=float,
|
42 |
+
required=False,
|
43 |
+
default=0.5,
|
44 |
+
help="A value between 0 and 1. 0 means original audio without transfer, 1 means completely transfer to the audio indicated by text",
|
45 |
+
)
|
46 |
+
|
47 |
+
parser.add_argument(
|
48 |
+
"-s",
|
49 |
+
"--save_path",
|
50 |
+
type=str,
|
51 |
+
required=False,
|
52 |
+
help="The path to save model output",
|
53 |
+
default="./output",
|
54 |
+
)
|
55 |
+
|
56 |
+
parser.add_argument(
|
57 |
+
"--model_name",
|
58 |
+
type=str,
|
59 |
+
required=False,
|
60 |
+
help="The checkpoint you gonna use",
|
61 |
+
default="audioldm-s-full",
|
62 |
+
choices=["audioldm-s-full", "audioldm-l-full", "audioldm-s-full-v2"]
|
63 |
+
)
|
64 |
+
|
65 |
+
parser.add_argument(
|
66 |
+
"-ckpt",
|
67 |
+
"--ckpt_path",
|
68 |
+
type=str,
|
69 |
+
required=False,
|
70 |
+
help="The path to the pretrained .ckpt model",
|
71 |
+
default=None,
|
72 |
+
)
|
73 |
+
|
74 |
+
parser.add_argument(
|
75 |
+
"-b",
|
76 |
+
"--batchsize",
|
77 |
+
type=int,
|
78 |
+
required=False,
|
79 |
+
default=1,
|
80 |
+
help="Generate how many samples at the same time",
|
81 |
+
)
|
82 |
+
|
83 |
+
parser.add_argument(
|
84 |
+
"--ddim_steps",
|
85 |
+
type=int,
|
86 |
+
required=False,
|
87 |
+
default=200,
|
88 |
+
help="The sampling step for DDIM",
|
89 |
+
)
|
90 |
+
|
91 |
+
parser.add_argument(
|
92 |
+
"-gs",
|
93 |
+
"--guidance_scale",
|
94 |
+
type=float,
|
95 |
+
required=False,
|
96 |
+
default=2.5,
|
97 |
+
help="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)",
|
98 |
+
)
|
99 |
+
|
100 |
+
parser.add_argument(
|
101 |
+
"-dur",
|
102 |
+
"--duration",
|
103 |
+
type=float,
|
104 |
+
required=False,
|
105 |
+
default=10.0,
|
106 |
+
help="The duration of the samples",
|
107 |
+
)
|
108 |
+
|
109 |
+
parser.add_argument(
|
110 |
+
"-n",
|
111 |
+
"--n_candidate_gen_per_text",
|
112 |
+
type=int,
|
113 |
+
required=False,
|
114 |
+
default=3,
|
115 |
+
help="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation",
|
116 |
+
)
|
117 |
+
|
118 |
+
parser.add_argument(
|
119 |
+
"--seed",
|
120 |
+
type=int,
|
121 |
+
required=False,
|
122 |
+
default=42,
|
123 |
+
help="Change this value (any integer number) will lead to a different generation result.",
|
124 |
+
)
|
125 |
+
|
126 |
+
args = parser.parse_args()
|
127 |
+
|
128 |
+
if(args.ckpt_path is not None):
|
129 |
+
print("Warning: ckpt_path has no effect after version 0.0.20.")
|
130 |
+
|
131 |
+
assert args.duration % 2.5 == 0, "Duration must be a multiple of 2.5"
|
132 |
+
|
133 |
+
mode = args.mode
|
134 |
+
if(mode == "generation" and args.file_path is not None):
|
135 |
+
mode = "generation_audio_to_audio"
|
136 |
+
if(len(args.text) > 0):
|
137 |
+
print("Warning: You have specified the --file_path. --text will be ignored")
|
138 |
+
args.text = ""
|
139 |
+
|
140 |
+
save_path = os.path.join(args.save_path, mode)
|
141 |
+
|
142 |
+
if(args.file_path is not None):
|
143 |
+
save_path = os.path.join(save_path, os.path.basename(args.file_path.split(".")[0]))
|
144 |
+
|
145 |
+
text = args.text
|
146 |
+
random_seed = args.seed
|
147 |
+
duration = args.duration
|
148 |
+
guidance_scale = args.guidance_scale
|
149 |
+
n_candidate_gen_per_text = args.n_candidate_gen_per_text
|
150 |
+
|
151 |
+
os.makedirs(save_path, exist_ok=True)
|
152 |
+
audioldm = build_model(model_name=args.model_name)
|
153 |
+
|
154 |
+
if(args.mode == "generation"):
|
155 |
+
waveform = text_to_audio(
|
156 |
+
audioldm,
|
157 |
+
text,
|
158 |
+
args.file_path,
|
159 |
+
random_seed,
|
160 |
+
duration=duration,
|
161 |
+
guidance_scale=guidance_scale,
|
162 |
+
ddim_steps=args.ddim_steps,
|
163 |
+
n_candidate_gen_per_text=n_candidate_gen_per_text,
|
164 |
+
batchsize=args.batchsize,
|
165 |
+
)
|
166 |
+
|
167 |
+
elif(args.mode == "transfer"):
|
168 |
+
assert args.file_path is not None
|
169 |
+
assert os.path.exists(args.file_path), "The original audio file \'%s\' for style transfer does not exist." % args.file_path
|
170 |
+
waveform = style_transfer(
|
171 |
+
audioldm,
|
172 |
+
text,
|
173 |
+
args.file_path,
|
174 |
+
args.transfer_strength,
|
175 |
+
random_seed,
|
176 |
+
duration=duration,
|
177 |
+
guidance_scale=guidance_scale,
|
178 |
+
ddim_steps=args.ddim_steps,
|
179 |
+
batchsize=args.batchsize,
|
180 |
+
)
|
181 |
+
waveform = waveform[:,None,:]
|
182 |
+
|
183 |
+
save_wave(waveform, save_path, name="%s_%s" % (get_time(), text))
|
audioldm/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (322 Bytes). View file
|
|
audioldm/__pycache__/ldm.cpython-39.pyc
ADDED
Binary file (16 kB). View file
|
|
audioldm/__pycache__/pipeline.cpython-39.pyc
ADDED
Binary file (6.54 kB). View file
|
|
audioldm/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (7.35 kB). View file
|
|
audioldm/audio/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .tools import wav_to_fbank, read_wav_file
|
2 |
+
from .stft import TacotronSTFT
|
audioldm/audio/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (260 Bytes). View file
|
|
audioldm/audio/__pycache__/audio_processing.cpython-39.pyc
ADDED
Binary file (2.78 kB). View file
|
|
audioldm/audio/__pycache__/mix.cpython-39.pyc
ADDED
Binary file (1.7 kB). View file
|
|
audioldm/audio/__pycache__/stft.cpython-39.pyc
ADDED
Binary file (4.99 kB). View file
|
|
audioldm/audio/__pycache__/tools.cpython-39.pyc
ADDED
Binary file (2.19 kB). View file
|
|
audioldm/audio/__pycache__/torch_tools.cpython-39.pyc
ADDED
Binary file (3.79 kB). View file
|
|
audioldm/audio/audio_processing.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import librosa.util as librosa_util
|
4 |
+
from scipy.signal import get_window
|
5 |
+
|
6 |
+
|
7 |
+
def window_sumsquare(
|
8 |
+
window,
|
9 |
+
n_frames,
|
10 |
+
hop_length,
|
11 |
+
win_length,
|
12 |
+
n_fft,
|
13 |
+
dtype=np.float32,
|
14 |
+
norm=None,
|
15 |
+
):
|
16 |
+
"""
|
17 |
+
# from librosa 0.6
|
18 |
+
Compute the sum-square envelope of a window function at a given hop length.
|
19 |
+
|
20 |
+
This is used to estimate modulation effects induced by windowing
|
21 |
+
observations in short-time fourier transforms.
|
22 |
+
|
23 |
+
Parameters
|
24 |
+
----------
|
25 |
+
window : string, tuple, number, callable, or list-like
|
26 |
+
Window specification, as in `get_window`
|
27 |
+
|
28 |
+
n_frames : int > 0
|
29 |
+
The number of analysis frames
|
30 |
+
|
31 |
+
hop_length : int > 0
|
32 |
+
The number of samples to advance between frames
|
33 |
+
|
34 |
+
win_length : [optional]
|
35 |
+
The length of the window function. By default, this matches `n_fft`.
|
36 |
+
|
37 |
+
n_fft : int > 0
|
38 |
+
The length of each analysis frame.
|
39 |
+
|
40 |
+
dtype : np.dtype
|
41 |
+
The data type of the output
|
42 |
+
|
43 |
+
Returns
|
44 |
+
-------
|
45 |
+
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
|
46 |
+
The sum-squared envelope of the window function
|
47 |
+
"""
|
48 |
+
if win_length is None:
|
49 |
+
win_length = n_fft
|
50 |
+
|
51 |
+
n = n_fft + hop_length * (n_frames - 1)
|
52 |
+
x = np.zeros(n, dtype=dtype)
|
53 |
+
|
54 |
+
# Compute the squared window at the desired length
|
55 |
+
win_sq = get_window(window, win_length, fftbins=True)
|
56 |
+
win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
|
57 |
+
win_sq = librosa_util.pad_center(win_sq, n_fft)
|
58 |
+
|
59 |
+
# Fill the envelope
|
60 |
+
for i in range(n_frames):
|
61 |
+
sample = i * hop_length
|
62 |
+
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
def griffin_lim(magnitudes, stft_fn, n_iters=30):
|
67 |
+
"""
|
68 |
+
PARAMS
|
69 |
+
------
|
70 |
+
magnitudes: spectrogram magnitudes
|
71 |
+
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
|
72 |
+
"""
|
73 |
+
|
74 |
+
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
|
75 |
+
angles = angles.astype(np.float32)
|
76 |
+
angles = torch.autograd.Variable(torch.from_numpy(angles))
|
77 |
+
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
|
78 |
+
|
79 |
+
for i in range(n_iters):
|
80 |
+
_, angles = stft_fn.transform(signal)
|
81 |
+
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
|
82 |
+
return signal
|
83 |
+
|
84 |
+
|
85 |
+
def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5):
|
86 |
+
"""
|
87 |
+
PARAMS
|
88 |
+
------
|
89 |
+
C: compression factor
|
90 |
+
"""
|
91 |
+
return normalize_fun(torch.clamp(x, min=clip_val) * C)
|
92 |
+
|
93 |
+
|
94 |
+
def dynamic_range_decompression(x, C=1):
|
95 |
+
"""
|
96 |
+
PARAMS
|
97 |
+
------
|
98 |
+
C: compression factor used to compress
|
99 |
+
"""
|
100 |
+
return torch.exp(x) / C
|
audioldm/audio/stft.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import numpy as np
|
4 |
+
from scipy.signal import get_window
|
5 |
+
from librosa.util import pad_center, tiny
|
6 |
+
from librosa.filters import mel as librosa_mel_fn
|
7 |
+
|
8 |
+
from audioldm.audio.audio_processing import (
|
9 |
+
dynamic_range_compression,
|
10 |
+
dynamic_range_decompression,
|
11 |
+
window_sumsquare,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
class STFT(torch.nn.Module):
|
16 |
+
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
|
17 |
+
|
18 |
+
def __init__(self, filter_length, hop_length, win_length, window="hann"):
|
19 |
+
super(STFT, self).__init__()
|
20 |
+
self.filter_length = filter_length
|
21 |
+
self.hop_length = hop_length
|
22 |
+
self.win_length = win_length
|
23 |
+
self.window = window
|
24 |
+
self.forward_transform = None
|
25 |
+
scale = self.filter_length / self.hop_length
|
26 |
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
27 |
+
|
28 |
+
cutoff = int((self.filter_length / 2 + 1))
|
29 |
+
fourier_basis = np.vstack(
|
30 |
+
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
|
31 |
+
)
|
32 |
+
|
33 |
+
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
34 |
+
inverse_basis = torch.FloatTensor(
|
35 |
+
np.linalg.pinv(scale * fourier_basis).T[:, None, :]
|
36 |
+
)
|
37 |
+
|
38 |
+
if window is not None:
|
39 |
+
assert filter_length >= win_length
|
40 |
+
# get window and zero center pad it to filter_length
|
41 |
+
fft_window = get_window(window, win_length, fftbins=True)
|
42 |
+
fft_window = pad_center(fft_window, filter_length)
|
43 |
+
fft_window = torch.from_numpy(fft_window).float()
|
44 |
+
|
45 |
+
# window the bases
|
46 |
+
forward_basis *= fft_window
|
47 |
+
inverse_basis *= fft_window
|
48 |
+
|
49 |
+
self.register_buffer("forward_basis", forward_basis.float())
|
50 |
+
self.register_buffer("inverse_basis", inverse_basis.float())
|
51 |
+
|
52 |
+
def transform(self, input_data):
|
53 |
+
device = self.forward_basis.device
|
54 |
+
input_data = input_data.to(device)
|
55 |
+
|
56 |
+
num_batches = input_data.size(0)
|
57 |
+
num_samples = input_data.size(1)
|
58 |
+
|
59 |
+
self.num_samples = num_samples
|
60 |
+
|
61 |
+
# similar to librosa, reflect-pad the input
|
62 |
+
input_data = input_data.view(num_batches, 1, num_samples)
|
63 |
+
input_data = F.pad(
|
64 |
+
input_data.unsqueeze(1),
|
65 |
+
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
|
66 |
+
mode="reflect",
|
67 |
+
)
|
68 |
+
input_data = input_data.squeeze(1)
|
69 |
+
|
70 |
+
forward_transform = F.conv1d(
|
71 |
+
input_data,
|
72 |
+
torch.autograd.Variable(self.forward_basis, requires_grad=False),
|
73 |
+
stride=self.hop_length,
|
74 |
+
padding=0,
|
75 |
+
)#.cpu()
|
76 |
+
|
77 |
+
cutoff = int((self.filter_length / 2) + 1)
|
78 |
+
real_part = forward_transform[:, :cutoff, :]
|
79 |
+
imag_part = forward_transform[:, cutoff:, :]
|
80 |
+
|
81 |
+
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
82 |
+
phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))
|
83 |
+
|
84 |
+
return magnitude, phase
|
85 |
+
|
86 |
+
def inverse(self, magnitude, phase):
|
87 |
+
device = self.forward_basis.device
|
88 |
+
magnitude, phase = magnitude.to(device), phase.to(device)
|
89 |
+
|
90 |
+
recombine_magnitude_phase = torch.cat(
|
91 |
+
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
92 |
+
)
|
93 |
+
|
94 |
+
inverse_transform = F.conv_transpose1d(
|
95 |
+
recombine_magnitude_phase,
|
96 |
+
torch.autograd.Variable(self.inverse_basis, requires_grad=False),
|
97 |
+
stride=self.hop_length,
|
98 |
+
padding=0,
|
99 |
+
)
|
100 |
+
|
101 |
+
if self.window is not None:
|
102 |
+
window_sum = window_sumsquare(
|
103 |
+
self.window,
|
104 |
+
magnitude.size(-1),
|
105 |
+
hop_length=self.hop_length,
|
106 |
+
win_length=self.win_length,
|
107 |
+
n_fft=self.filter_length,
|
108 |
+
dtype=np.float32,
|
109 |
+
)
|
110 |
+
# remove modulation effects
|
111 |
+
approx_nonzero_indices = torch.from_numpy(
|
112 |
+
np.where(window_sum > tiny(window_sum))[0]
|
113 |
+
)
|
114 |
+
window_sum = torch.autograd.Variable(
|
115 |
+
torch.from_numpy(window_sum), requires_grad=False
|
116 |
+
)
|
117 |
+
window_sum = window_sum
|
118 |
+
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
|
119 |
+
approx_nonzero_indices
|
120 |
+
]
|
121 |
+
|
122 |
+
# scale by hop ratio
|
123 |
+
inverse_transform *= float(self.filter_length) / self.hop_length
|
124 |
+
|
125 |
+
inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :]
|
126 |
+
inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :]
|
127 |
+
|
128 |
+
return inverse_transform
|
129 |
+
|
130 |
+
def forward(self, input_data):
|
131 |
+
self.magnitude, self.phase = self.transform(input_data)
|
132 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
133 |
+
return reconstruction
|
134 |
+
|
135 |
+
|
136 |
+
class TacotronSTFT(torch.nn.Module):
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
filter_length,
|
140 |
+
hop_length,
|
141 |
+
win_length,
|
142 |
+
n_mel_channels,
|
143 |
+
sampling_rate,
|
144 |
+
mel_fmin,
|
145 |
+
mel_fmax,
|
146 |
+
):
|
147 |
+
super(TacotronSTFT, self).__init__()
|
148 |
+
self.n_mel_channels = n_mel_channels
|
149 |
+
self.sampling_rate = sampling_rate
|
150 |
+
self.stft_fn = STFT(filter_length, hop_length, win_length)
|
151 |
+
mel_basis = librosa_mel_fn(
|
152 |
+
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax
|
153 |
+
)
|
154 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
155 |
+
self.register_buffer("mel_basis", mel_basis)
|
156 |
+
|
157 |
+
def spectral_normalize(self, magnitudes, normalize_fun):
|
158 |
+
output = dynamic_range_compression(magnitudes, normalize_fun)
|
159 |
+
return output
|
160 |
+
|
161 |
+
def spectral_de_normalize(self, magnitudes):
|
162 |
+
output = dynamic_range_decompression(magnitudes)
|
163 |
+
return output
|
164 |
+
|
165 |
+
def mel_spectrogram(self, y, normalize_fun=torch.log):
|
166 |
+
"""Computes mel-spectrograms from a batch of waves
|
167 |
+
PARAMS
|
168 |
+
------
|
169 |
+
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
|
170 |
+
|
171 |
+
RETURNS
|
172 |
+
-------
|
173 |
+
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
|
174 |
+
"""
|
175 |
+
assert torch.min(y.data) >= -1, torch.min(y.data)
|
176 |
+
assert torch.max(y.data) <= 1, torch.max(y.data)
|
177 |
+
|
178 |
+
magnitudes, phases = self.stft_fn.transform(y)
|
179 |
+
magnitudes = magnitudes.data
|
180 |
+
mel_output = torch.matmul(self.mel_basis, magnitudes)
|
181 |
+
mel_output = self.spectral_normalize(mel_output, normalize_fun)
|
182 |
+
energy = torch.norm(magnitudes, dim=1)
|
183 |
+
|
184 |
+
log_magnitudes = self.spectral_normalize(magnitudes, normalize_fun)
|
185 |
+
|
186 |
+
return mel_output, log_magnitudes, energy
|
audioldm/audio/tools.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torchaudio
|
4 |
+
|
5 |
+
|
6 |
+
def get_mel_from_wav(audio, _stft):
|
7 |
+
audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
|
8 |
+
audio = torch.autograd.Variable(audio, requires_grad=False)
|
9 |
+
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
|
10 |
+
melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
|
11 |
+
log_magnitudes_stft = (
|
12 |
+
torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32)
|
13 |
+
)
|
14 |
+
energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
|
15 |
+
return melspec, log_magnitudes_stft, energy
|
16 |
+
|
17 |
+
|
18 |
+
def _pad_spec(fbank, target_length=1024):
|
19 |
+
n_frames = fbank.shape[0]
|
20 |
+
p = target_length - n_frames
|
21 |
+
# cut and pad
|
22 |
+
if p > 0:
|
23 |
+
m = torch.nn.ZeroPad2d((0, 0, 0, p))
|
24 |
+
fbank = m(fbank)
|
25 |
+
elif p < 0:
|
26 |
+
fbank = fbank[0:target_length, :]
|
27 |
+
|
28 |
+
if fbank.size(-1) % 2 != 0:
|
29 |
+
fbank = fbank[..., :-1]
|
30 |
+
|
31 |
+
return fbank
|
32 |
+
|
33 |
+
|
34 |
+
def pad_wav(waveform, segment_length):
|
35 |
+
waveform_length = waveform.shape[-1]
|
36 |
+
assert waveform_length > 100, "Waveform is too short, %s" % waveform_length
|
37 |
+
if segment_length is None or waveform_length == segment_length:
|
38 |
+
return waveform
|
39 |
+
elif waveform_length > segment_length:
|
40 |
+
return waveform[:segment_length]
|
41 |
+
elif waveform_length < segment_length:
|
42 |
+
temp_wav = np.zeros((1, segment_length))
|
43 |
+
temp_wav[:, :waveform_length] = waveform
|
44 |
+
return temp_wav
|
45 |
+
|
46 |
+
def normalize_wav(waveform):
|
47 |
+
waveform = waveform - np.mean(waveform)
|
48 |
+
waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
|
49 |
+
return waveform * 0.5
|
50 |
+
|
51 |
+
|
52 |
+
def read_wav_file(filename, segment_length):
|
53 |
+
# waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
|
54 |
+
waveform, sr = torchaudio.load(filename) # Faster!!!
|
55 |
+
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
56 |
+
waveform = waveform.numpy()[0, ...]
|
57 |
+
waveform = normalize_wav(waveform)
|
58 |
+
waveform = waveform[None, ...]
|
59 |
+
waveform = pad_wav(waveform, segment_length)
|
60 |
+
|
61 |
+
waveform = waveform / np.max(np.abs(waveform))
|
62 |
+
waveform = 0.5 * waveform
|
63 |
+
|
64 |
+
return waveform
|
65 |
+
|
66 |
+
|
67 |
+
def wav_to_fbank(filename, target_length=1024, fn_STFT=None):
|
68 |
+
assert fn_STFT is not None
|
69 |
+
|
70 |
+
# mixup
|
71 |
+
waveform = read_wav_file(filename, target_length * 160) # hop size is 160
|
72 |
+
|
73 |
+
waveform = waveform[0, ...]
|
74 |
+
waveform = torch.FloatTensor(waveform)
|
75 |
+
|
76 |
+
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
|
77 |
+
|
78 |
+
fbank = torch.FloatTensor(fbank.T)
|
79 |
+
log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T)
|
80 |
+
|
81 |
+
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
|
82 |
+
log_magnitudes_stft, target_length
|
83 |
+
)
|
84 |
+
|
85 |
+
return fbank, log_magnitudes_stft, waveform
|
audioldm/hifigan/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .models import Generator
|
2 |
+
|
3 |
+
|
4 |
+
class AttrDict(dict):
|
5 |
+
def __init__(self, *args, **kwargs):
|
6 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
7 |
+
self.__dict__ = self
|
audioldm/hifigan/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (574 Bytes). View file
|
|
audioldm/hifigan/__pycache__/models.cpython-39.pyc
ADDED
Binary file (3.73 kB). View file
|
|
audioldm/hifigan/__pycache__/utilities.cpython-39.pyc
ADDED
Binary file (2.37 kB). View file
|
|
audioldm/hifigan/models.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
5 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
6 |
+
|
7 |
+
LRELU_SLOPE = 0.1
|
8 |
+
|
9 |
+
|
10 |
+
def init_weights(m, mean=0.0, std=0.01):
|
11 |
+
classname = m.__class__.__name__
|
12 |
+
if classname.find("Conv") != -1:
|
13 |
+
m.weight.data.normal_(mean, std)
|
14 |
+
|
15 |
+
|
16 |
+
def get_padding(kernel_size, dilation=1):
|
17 |
+
return int((kernel_size * dilation - dilation) / 2)
|
18 |
+
|
19 |
+
|
20 |
+
class ResBlock(torch.nn.Module):
|
21 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
22 |
+
super(ResBlock, self).__init__()
|
23 |
+
self.h = h
|
24 |
+
self.convs1 = nn.ModuleList(
|
25 |
+
[
|
26 |
+
weight_norm(
|
27 |
+
Conv1d(
|
28 |
+
channels,
|
29 |
+
channels,
|
30 |
+
kernel_size,
|
31 |
+
1,
|
32 |
+
dilation=dilation[0],
|
33 |
+
padding=get_padding(kernel_size, dilation[0]),
|
34 |
+
)
|
35 |
+
),
|
36 |
+
weight_norm(
|
37 |
+
Conv1d(
|
38 |
+
channels,
|
39 |
+
channels,
|
40 |
+
kernel_size,
|
41 |
+
1,
|
42 |
+
dilation=dilation[1],
|
43 |
+
padding=get_padding(kernel_size, dilation[1]),
|
44 |
+
)
|
45 |
+
),
|
46 |
+
weight_norm(
|
47 |
+
Conv1d(
|
48 |
+
channels,
|
49 |
+
channels,
|
50 |
+
kernel_size,
|
51 |
+
1,
|
52 |
+
dilation=dilation[2],
|
53 |
+
padding=get_padding(kernel_size, dilation[2]),
|
54 |
+
)
|
55 |
+
),
|
56 |
+
]
|
57 |
+
)
|
58 |
+
self.convs1.apply(init_weights)
|
59 |
+
|
60 |
+
self.convs2 = nn.ModuleList(
|
61 |
+
[
|
62 |
+
weight_norm(
|
63 |
+
Conv1d(
|
64 |
+
channels,
|
65 |
+
channels,
|
66 |
+
kernel_size,
|
67 |
+
1,
|
68 |
+
dilation=1,
|
69 |
+
padding=get_padding(kernel_size, 1),
|
70 |
+
)
|
71 |
+
),
|
72 |
+
weight_norm(
|
73 |
+
Conv1d(
|
74 |
+
channels,
|
75 |
+
channels,
|
76 |
+
kernel_size,
|
77 |
+
1,
|
78 |
+
dilation=1,
|
79 |
+
padding=get_padding(kernel_size, 1),
|
80 |
+
)
|
81 |
+
),
|
82 |
+
weight_norm(
|
83 |
+
Conv1d(
|
84 |
+
channels,
|
85 |
+
channels,
|
86 |
+
kernel_size,
|
87 |
+
1,
|
88 |
+
dilation=1,
|
89 |
+
padding=get_padding(kernel_size, 1),
|
90 |
+
)
|
91 |
+
),
|
92 |
+
]
|
93 |
+
)
|
94 |
+
self.convs2.apply(init_weights)
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
98 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
99 |
+
xt = c1(xt)
|
100 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
101 |
+
xt = c2(xt)
|
102 |
+
x = xt + x
|
103 |
+
return x
|
104 |
+
|
105 |
+
def remove_weight_norm(self):
|
106 |
+
for l in self.convs1:
|
107 |
+
remove_weight_norm(l)
|
108 |
+
for l in self.convs2:
|
109 |
+
remove_weight_norm(l)
|
110 |
+
|
111 |
+
|
112 |
+
class Generator(torch.nn.Module):
|
113 |
+
def __init__(self, h):
|
114 |
+
super(Generator, self).__init__()
|
115 |
+
self.h = h
|
116 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
117 |
+
self.num_upsamples = len(h.upsample_rates)
|
118 |
+
self.conv_pre = weight_norm(
|
119 |
+
Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
|
120 |
+
)
|
121 |
+
resblock = ResBlock
|
122 |
+
|
123 |
+
self.ups = nn.ModuleList()
|
124 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
125 |
+
self.ups.append(
|
126 |
+
weight_norm(
|
127 |
+
ConvTranspose1d(
|
128 |
+
h.upsample_initial_channel // (2**i),
|
129 |
+
h.upsample_initial_channel // (2 ** (i + 1)),
|
130 |
+
k,
|
131 |
+
u,
|
132 |
+
padding=(k - u) // 2,
|
133 |
+
)
|
134 |
+
)
|
135 |
+
)
|
136 |
+
|
137 |
+
self.resblocks = nn.ModuleList()
|
138 |
+
for i in range(len(self.ups)):
|
139 |
+
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
140 |
+
for j, (k, d) in enumerate(
|
141 |
+
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
|
142 |
+
):
|
143 |
+
self.resblocks.append(resblock(h, ch, k, d))
|
144 |
+
|
145 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
146 |
+
self.ups.apply(init_weights)
|
147 |
+
self.conv_post.apply(init_weights)
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
x = self.conv_pre(x)
|
151 |
+
for i in range(self.num_upsamples):
|
152 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
153 |
+
x = self.ups[i](x)
|
154 |
+
xs = None
|
155 |
+
for j in range(self.num_kernels):
|
156 |
+
if xs is None:
|
157 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
158 |
+
else:
|
159 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
160 |
+
x = xs / self.num_kernels
|
161 |
+
x = F.leaky_relu(x)
|
162 |
+
x = self.conv_post(x)
|
163 |
+
x = torch.tanh(x)
|
164 |
+
|
165 |
+
return x
|
166 |
+
|
167 |
+
def remove_weight_norm(self):
|
168 |
+
# print("Removing weight norm...")
|
169 |
+
for l in self.ups:
|
170 |
+
remove_weight_norm(l)
|
171 |
+
for l in self.resblocks:
|
172 |
+
l.remove_weight_norm()
|
173 |
+
remove_weight_norm(self.conv_pre)
|
174 |
+
remove_weight_norm(self.conv_post)
|
audioldm/hifigan/utilities.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import audioldm.hifigan as hifigan
|
8 |
+
|
9 |
+
HIFIGAN_16K_64 = {
|
10 |
+
"resblock": "1",
|
11 |
+
"num_gpus": 6,
|
12 |
+
"batch_size": 16,
|
13 |
+
"learning_rate": 0.0002,
|
14 |
+
"adam_b1": 0.8,
|
15 |
+
"adam_b2": 0.99,
|
16 |
+
"lr_decay": 0.999,
|
17 |
+
"seed": 1234,
|
18 |
+
"upsample_rates": [5, 4, 2, 2, 2],
|
19 |
+
"upsample_kernel_sizes": [16, 16, 8, 4, 4],
|
20 |
+
"upsample_initial_channel": 1024,
|
21 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
22 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
23 |
+
"segment_size": 8192,
|
24 |
+
"num_mels": 64,
|
25 |
+
"num_freq": 1025,
|
26 |
+
"n_fft": 1024,
|
27 |
+
"hop_size": 160,
|
28 |
+
"win_size": 1024,
|
29 |
+
"sampling_rate": 16000,
|
30 |
+
"fmin": 0,
|
31 |
+
"fmax": 8000,
|
32 |
+
"fmax_for_loss": None,
|
33 |
+
"num_workers": 4,
|
34 |
+
"dist_config": {
|
35 |
+
"dist_backend": "nccl",
|
36 |
+
"dist_url": "tcp://localhost:54321",
|
37 |
+
"world_size": 1,
|
38 |
+
},
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
def get_available_checkpoint_keys(model, ckpt):
|
43 |
+
print("==> Attemp to reload from %s" % ckpt)
|
44 |
+
state_dict = torch.load(ckpt)["state_dict"]
|
45 |
+
current_state_dict = model.state_dict()
|
46 |
+
new_state_dict = {}
|
47 |
+
for k in state_dict.keys():
|
48 |
+
if (
|
49 |
+
k in current_state_dict.keys()
|
50 |
+
and current_state_dict[k].size() == state_dict[k].size()
|
51 |
+
):
|
52 |
+
new_state_dict[k] = state_dict[k]
|
53 |
+
else:
|
54 |
+
print("==> WARNING: Skipping %s" % k)
|
55 |
+
print(
|
56 |
+
"%s out of %s keys are matched"
|
57 |
+
% (len(new_state_dict.keys()), len(state_dict.keys()))
|
58 |
+
)
|
59 |
+
return new_state_dict
|
60 |
+
|
61 |
+
|
62 |
+
def get_param_num(model):
|
63 |
+
num_param = sum(param.numel() for param in model.parameters())
|
64 |
+
return num_param
|
65 |
+
|
66 |
+
|
67 |
+
def get_vocoder(config, device):
|
68 |
+
config = hifigan.AttrDict(HIFIGAN_16K_64)
|
69 |
+
vocoder = hifigan.Generator(config)
|
70 |
+
vocoder.eval()
|
71 |
+
vocoder.remove_weight_norm()
|
72 |
+
vocoder.to(device)
|
73 |
+
return vocoder
|
74 |
+
|
75 |
+
|
76 |
+
def vocoder_infer(mels, vocoder, lengths=None):
|
77 |
+
vocoder.eval()
|
78 |
+
with torch.no_grad():
|
79 |
+
wavs = vocoder(mels).squeeze(1)
|
80 |
+
|
81 |
+
wavs = (wavs.cpu().numpy() * 32768).astype("int16")
|
82 |
+
|
83 |
+
if lengths is not None:
|
84 |
+
wavs = wavs[:, :lengths]
|
85 |
+
|
86 |
+
return wavs
|
audioldm/latent_diffusion/__init__.py
ADDED
File without changes
|
audioldm/latent_diffusion/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (164 Bytes). View file
|
|
audioldm/latent_diffusion/__pycache__/attention.cpython-39.pyc
ADDED
Binary file (11.4 kB). View file
|
|
audioldm/latent_diffusion/__pycache__/ddim.cpython-39.pyc
ADDED
Binary file (7.11 kB). View file
|
|
audioldm/latent_diffusion/__pycache__/ddpm.cpython-39.pyc
ADDED
Binary file (11 kB). View file
|
|
audioldm/latent_diffusion/__pycache__/ema.cpython-39.pyc
ADDED
Binary file (3 kB). View file
|
|
audioldm/latent_diffusion/__pycache__/openaimodel.cpython-39.pyc
ADDED
Binary file (23.7 kB). View file
|
|
audioldm/latent_diffusion/__pycache__/util.cpython-39.pyc
ADDED
Binary file (9.6 kB). View file
|
|
audioldm/latent_diffusion/attention.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from audioldm.latent_diffusion.util import checkpoint
|
9 |
+
|
10 |
+
|
11 |
+
def exists(val):
|
12 |
+
return val is not None
|
13 |
+
|
14 |
+
|
15 |
+
def uniq(arr):
|
16 |
+
return {el: True for el in arr}.keys()
|
17 |
+
|
18 |
+
|
19 |
+
def default(val, d):
|
20 |
+
if exists(val):
|
21 |
+
return val
|
22 |
+
return d() if isfunction(d) else d
|
23 |
+
|
24 |
+
|
25 |
+
def max_neg_value(t):
|
26 |
+
return -torch.finfo(t.dtype).max
|
27 |
+
|
28 |
+
|
29 |
+
def init_(tensor):
|
30 |
+
dim = tensor.shape[-1]
|
31 |
+
std = 1 / math.sqrt(dim)
|
32 |
+
tensor.uniform_(-std, std)
|
33 |
+
return tensor
|
34 |
+
|
35 |
+
|
36 |
+
# feedforward
|
37 |
+
class GEGLU(nn.Module):
|
38 |
+
def __init__(self, dim_in, dim_out):
|
39 |
+
super().__init__()
|
40 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
44 |
+
return x * F.gelu(gate)
|
45 |
+
|
46 |
+
|
47 |
+
class FeedForward(nn.Module):
|
48 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
49 |
+
super().__init__()
|
50 |
+
inner_dim = int(dim * mult)
|
51 |
+
dim_out = default(dim_out, dim)
|
52 |
+
project_in = (
|
53 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
54 |
+
if not glu
|
55 |
+
else GEGLU(dim, inner_dim)
|
56 |
+
)
|
57 |
+
|
58 |
+
self.net = nn.Sequential(
|
59 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
return self.net(x)
|
64 |
+
|
65 |
+
|
66 |
+
def zero_module(module):
|
67 |
+
"""
|
68 |
+
Zero out the parameters of a module and return it.
|
69 |
+
"""
|
70 |
+
for p in module.parameters():
|
71 |
+
p.detach().zero_()
|
72 |
+
return module
|
73 |
+
|
74 |
+
|
75 |
+
def Normalize(in_channels):
|
76 |
+
return torch.nn.GroupNorm(
|
77 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
class LinearAttention(nn.Module):
|
82 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
83 |
+
super().__init__()
|
84 |
+
self.heads = heads
|
85 |
+
hidden_dim = dim_head * heads
|
86 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
87 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
b, c, h, w = x.shape
|
91 |
+
qkv = self.to_qkv(x)
|
92 |
+
q, k, v = rearrange(
|
93 |
+
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
|
94 |
+
)
|
95 |
+
k = k.softmax(dim=-1)
|
96 |
+
context = torch.einsum("bhdn,bhen->bhde", k, v)
|
97 |
+
out = torch.einsum("bhde,bhdn->bhen", context, q)
|
98 |
+
out = rearrange(
|
99 |
+
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
|
100 |
+
)
|
101 |
+
return self.to_out(out)
|
102 |
+
|
103 |
+
|
104 |
+
class SpatialSelfAttention(nn.Module):
|
105 |
+
def __init__(self, in_channels):
|
106 |
+
super().__init__()
|
107 |
+
self.in_channels = in_channels
|
108 |
+
|
109 |
+
self.norm = Normalize(in_channels)
|
110 |
+
self.q = torch.nn.Conv2d(
|
111 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
112 |
+
)
|
113 |
+
self.k = torch.nn.Conv2d(
|
114 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
115 |
+
)
|
116 |
+
self.v = torch.nn.Conv2d(
|
117 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
118 |
+
)
|
119 |
+
self.proj_out = torch.nn.Conv2d(
|
120 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
121 |
+
)
|
122 |
+
|
123 |
+
def forward(self, x):
|
124 |
+
h_ = x
|
125 |
+
h_ = self.norm(h_)
|
126 |
+
q = self.q(h_)
|
127 |
+
k = self.k(h_)
|
128 |
+
v = self.v(h_)
|
129 |
+
|
130 |
+
# compute attention
|
131 |
+
b, c, h, w = q.shape
|
132 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
133 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
134 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
135 |
+
|
136 |
+
w_ = w_ * (int(c) ** (-0.5))
|
137 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
138 |
+
|
139 |
+
# attend to values
|
140 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
141 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
142 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
143 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
144 |
+
h_ = self.proj_out(h_)
|
145 |
+
|
146 |
+
return x + h_
|
147 |
+
|
148 |
+
|
149 |
+
class CrossAttention(nn.Module):
|
150 |
+
"""
|
151 |
+
### Cross Attention Layer
|
152 |
+
This falls-back to self-attention when conditional embeddings are not specified.
|
153 |
+
"""
|
154 |
+
|
155 |
+
# use_flash_attention: bool = True
|
156 |
+
use_flash_attention: bool = False
|
157 |
+
|
158 |
+
def __init__(
|
159 |
+
self,
|
160 |
+
query_dim,
|
161 |
+
context_dim=None,
|
162 |
+
heads=8,
|
163 |
+
dim_head=64,
|
164 |
+
dropout=0.0,
|
165 |
+
is_inplace: bool = True,
|
166 |
+
):
|
167 |
+
# def __init__(self, d_model: int, d_cond: int, n_heads: int, d_head: int, is_inplace: bool = True):
|
168 |
+
"""
|
169 |
+
:param d_model: is the input embedding size
|
170 |
+
:param n_heads: is the number of attention heads
|
171 |
+
:param d_head: is the size of a attention head
|
172 |
+
:param d_cond: is the size of the conditional embeddings
|
173 |
+
:param is_inplace: specifies whether to perform the attention softmax computation inplace to
|
174 |
+
save memory
|
175 |
+
"""
|
176 |
+
super().__init__()
|
177 |
+
|
178 |
+
self.is_inplace = is_inplace
|
179 |
+
self.n_heads = heads
|
180 |
+
self.d_head = dim_head
|
181 |
+
|
182 |
+
# Attention scaling factor
|
183 |
+
self.scale = dim_head**-0.5
|
184 |
+
|
185 |
+
# The normal self-attention layer
|
186 |
+
if context_dim is None:
|
187 |
+
context_dim = query_dim
|
188 |
+
|
189 |
+
# Query, key and value mappings
|
190 |
+
d_attn = dim_head * heads
|
191 |
+
self.to_q = nn.Linear(query_dim, d_attn, bias=False)
|
192 |
+
self.to_k = nn.Linear(context_dim, d_attn, bias=False)
|
193 |
+
self.to_v = nn.Linear(context_dim, d_attn, bias=False)
|
194 |
+
|
195 |
+
# Final linear layer
|
196 |
+
self.to_out = nn.Sequential(nn.Linear(d_attn, query_dim), nn.Dropout(dropout))
|
197 |
+
|
198 |
+
# Setup [flash attention](https://github.com/HazyResearch/flash-attention).
|
199 |
+
# Flash attention is only used if it's installed
|
200 |
+
# and `CrossAttention.use_flash_attention` is set to `True`.
|
201 |
+
try:
|
202 |
+
# You can install flash attention by cloning their Github repo,
|
203 |
+
# [https://github.com/HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention)
|
204 |
+
# and then running `python setup.py install`
|
205 |
+
from flash_attn.flash_attention import FlashAttention
|
206 |
+
|
207 |
+
self.flash = FlashAttention()
|
208 |
+
# Set the scale for scaled dot-product attention.
|
209 |
+
self.flash.softmax_scale = self.scale
|
210 |
+
# Set to `None` if it's not installed
|
211 |
+
except ImportError:
|
212 |
+
self.flash = None
|
213 |
+
|
214 |
+
def forward(self, x, context=None, mask=None):
|
215 |
+
"""
|
216 |
+
:param x: are the input embeddings of shape `[batch_size, height * width, d_model]`
|
217 |
+
:param cond: is the conditional embeddings of shape `[batch_size, n_cond, d_cond]`
|
218 |
+
"""
|
219 |
+
|
220 |
+
# If `cond` is `None` we perform self attention
|
221 |
+
has_cond = context is not None
|
222 |
+
if not has_cond:
|
223 |
+
context = x
|
224 |
+
|
225 |
+
# Get query, key and value vectors
|
226 |
+
q = self.to_q(x)
|
227 |
+
k = self.to_k(context)
|
228 |
+
v = self.to_v(context)
|
229 |
+
|
230 |
+
# Use flash attention if it's available and the head size is less than or equal to `128`
|
231 |
+
if (
|
232 |
+
CrossAttention.use_flash_attention
|
233 |
+
and self.flash is not None
|
234 |
+
and not has_cond
|
235 |
+
and self.d_head <= 128
|
236 |
+
):
|
237 |
+
return self.flash_attention(q, k, v)
|
238 |
+
# Otherwise, fallback to normal attention
|
239 |
+
else:
|
240 |
+
return self.normal_attention(q, k, v)
|
241 |
+
|
242 |
+
def flash_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
|
243 |
+
"""
|
244 |
+
#### Flash Attention
|
245 |
+
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
246 |
+
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
247 |
+
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
248 |
+
"""
|
249 |
+
|
250 |
+
# Get batch size and number of elements along sequence axis (`width * height`)
|
251 |
+
batch_size, seq_len, _ = q.shape
|
252 |
+
|
253 |
+
# Stack `q`, `k`, `v` vectors for flash attention, to get a single tensor of
|
254 |
+
# shape `[batch_size, seq_len, 3, n_heads * d_head]`
|
255 |
+
qkv = torch.stack((q, k, v), dim=2)
|
256 |
+
# Split the heads
|
257 |
+
qkv = qkv.view(batch_size, seq_len, 3, self.n_heads, self.d_head)
|
258 |
+
|
259 |
+
# Flash attention works for head sizes `32`, `64` and `128`, so we have to pad the heads to
|
260 |
+
# fit this size.
|
261 |
+
if self.d_head <= 32:
|
262 |
+
pad = 32 - self.d_head
|
263 |
+
elif self.d_head <= 64:
|
264 |
+
pad = 64 - self.d_head
|
265 |
+
elif self.d_head <= 128:
|
266 |
+
pad = 128 - self.d_head
|
267 |
+
else:
|
268 |
+
raise ValueError(f"Head size ${self.d_head} too large for Flash Attention")
|
269 |
+
|
270 |
+
# Pad the heads
|
271 |
+
if pad:
|
272 |
+
qkv = torch.cat(
|
273 |
+
(qkv, qkv.new_zeros(batch_size, seq_len, 3, self.n_heads, pad)), dim=-1
|
274 |
+
)
|
275 |
+
|
276 |
+
# Compute attention
|
277 |
+
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
|
278 |
+
# This gives a tensor of shape `[batch_size, seq_len, n_heads, d_padded]`
|
279 |
+
# TODO here I add the dtype changing
|
280 |
+
out, _ = self.flash(qkv.type(torch.float16))
|
281 |
+
# Truncate the extra head size
|
282 |
+
out = out[:, :, :, : self.d_head].float()
|
283 |
+
# Reshape to `[batch_size, seq_len, n_heads * d_head]`
|
284 |
+
out = out.reshape(batch_size, seq_len, self.n_heads * self.d_head)
|
285 |
+
|
286 |
+
# Map to `[batch_size, height * width, d_model]` with a linear layer
|
287 |
+
return self.to_out(out)
|
288 |
+
|
289 |
+
def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
|
290 |
+
"""
|
291 |
+
#### Normal Attention
|
292 |
+
|
293 |
+
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
294 |
+
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
295 |
+
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
|
296 |
+
"""
|
297 |
+
|
298 |
+
# Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]`
|
299 |
+
q = q.view(*q.shape[:2], self.n_heads, -1) # [bs, 64, 20, 32]
|
300 |
+
k = k.view(*k.shape[:2], self.n_heads, -1) # [bs, 1, 20, 32]
|
301 |
+
v = v.view(*v.shape[:2], self.n_heads, -1)
|
302 |
+
|
303 |
+
# Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$
|
304 |
+
attn = torch.einsum("bihd,bjhd->bhij", q, k) * self.scale
|
305 |
+
|
306 |
+
# Compute softmax
|
307 |
+
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$
|
308 |
+
if self.is_inplace:
|
309 |
+
half = attn.shape[0] // 2
|
310 |
+
attn[half:] = attn[half:].softmax(dim=-1)
|
311 |
+
attn[:half] = attn[:half].softmax(dim=-1)
|
312 |
+
else:
|
313 |
+
attn = attn.softmax(dim=-1)
|
314 |
+
|
315 |
+
# Compute attention output
|
316 |
+
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
|
317 |
+
# attn: [bs, 20, 64, 1]
|
318 |
+
# v: [bs, 1, 20, 32]
|
319 |
+
out = torch.einsum("bhij,bjhd->bihd", attn, v)
|
320 |
+
# Reshape to `[batch_size, height * width, n_heads * d_head]`
|
321 |
+
out = out.reshape(*out.shape[:2], -1)
|
322 |
+
# Map to `[batch_size, height * width, d_model]` with a linear layer
|
323 |
+
return self.to_out(out)
|
324 |
+
|
325 |
+
|
326 |
+
# class CrossAttention(nn.Module):
|
327 |
+
# def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
328 |
+
# super().__init__()
|
329 |
+
# inner_dim = dim_head * heads
|
330 |
+
# context_dim = default(context_dim, query_dim)
|
331 |
+
|
332 |
+
# self.scale = dim_head ** -0.5
|
333 |
+
# self.heads = heads
|
334 |
+
|
335 |
+
# self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
336 |
+
# self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
337 |
+
# self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
338 |
+
|
339 |
+
# self.to_out = nn.Sequential(
|
340 |
+
# nn.Linear(inner_dim, query_dim),
|
341 |
+
# nn.Dropout(dropout)
|
342 |
+
# )
|
343 |
+
|
344 |
+
# def forward(self, x, context=None, mask=None):
|
345 |
+
# h = self.heads
|
346 |
+
|
347 |
+
# q = self.to_q(x)
|
348 |
+
# context = default(context, x)
|
349 |
+
# k = self.to_k(context)
|
350 |
+
# v = self.to_v(context)
|
351 |
+
|
352 |
+
# q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
353 |
+
|
354 |
+
# sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
355 |
+
|
356 |
+
# if exists(mask):
|
357 |
+
# mask = rearrange(mask, 'b ... -> b (...)')
|
358 |
+
# max_neg_value = -torch.finfo(sim.dtype).max
|
359 |
+
# mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
360 |
+
# sim.masked_fill_(~mask, max_neg_value)
|
361 |
+
|
362 |
+
# # attention, what we cannot get enough of
|
363 |
+
# attn = sim.softmax(dim=-1)
|
364 |
+
|
365 |
+
# out = einsum('b i j, b j d -> b i d', attn, v)
|
366 |
+
# out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
367 |
+
# return self.to_out(out)
|
368 |
+
|
369 |
+
|
370 |
+
class BasicTransformerBlock(nn.Module):
|
371 |
+
def __init__(
|
372 |
+
self,
|
373 |
+
dim,
|
374 |
+
n_heads,
|
375 |
+
d_head,
|
376 |
+
dropout=0.0,
|
377 |
+
context_dim=None,
|
378 |
+
gated_ff=True,
|
379 |
+
checkpoint=True,
|
380 |
+
):
|
381 |
+
super().__init__()
|
382 |
+
self.attn1 = CrossAttention(
|
383 |
+
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
384 |
+
) # is a self-attention
|
385 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
386 |
+
self.attn2 = CrossAttention(
|
387 |
+
query_dim=dim,
|
388 |
+
context_dim=context_dim,
|
389 |
+
heads=n_heads,
|
390 |
+
dim_head=d_head,
|
391 |
+
dropout=dropout,
|
392 |
+
) # is self-attn if context is none
|
393 |
+
self.norm1 = nn.LayerNorm(dim)
|
394 |
+
self.norm2 = nn.LayerNorm(dim)
|
395 |
+
self.norm3 = nn.LayerNorm(dim)
|
396 |
+
self.checkpoint = checkpoint
|
397 |
+
|
398 |
+
def forward(self, x, context=None):
|
399 |
+
if context is None:
|
400 |
+
return checkpoint(self._forward, (x,), self.parameters(), self.checkpoint)
|
401 |
+
else:
|
402 |
+
return checkpoint(
|
403 |
+
self._forward, (x, context), self.parameters(), self.checkpoint
|
404 |
+
)
|
405 |
+
|
406 |
+
def _forward(self, x, context=None):
|
407 |
+
x = self.attn1(self.norm1(x)) + x
|
408 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
409 |
+
x = self.ff(self.norm3(x)) + x
|
410 |
+
return x
|
411 |
+
|
412 |
+
|
413 |
+
class SpatialTransformer(nn.Module):
|
414 |
+
"""
|
415 |
+
Transformer block for image-like data.
|
416 |
+
First, project the input (aka embedding)
|
417 |
+
and reshape to b, t, d.
|
418 |
+
Then apply standard transformer action.
|
419 |
+
Finally, reshape to image
|
420 |
+
"""
|
421 |
+
|
422 |
+
def __init__(
|
423 |
+
self,
|
424 |
+
in_channels,
|
425 |
+
n_heads,
|
426 |
+
d_head,
|
427 |
+
depth=1,
|
428 |
+
dropout=0.0,
|
429 |
+
context_dim=None,
|
430 |
+
no_context=False,
|
431 |
+
):
|
432 |
+
super().__init__()
|
433 |
+
|
434 |
+
if no_context:
|
435 |
+
context_dim = None
|
436 |
+
|
437 |
+
self.in_channels = in_channels
|
438 |
+
inner_dim = n_heads * d_head
|
439 |
+
self.norm = Normalize(in_channels)
|
440 |
+
|
441 |
+
self.proj_in = nn.Conv2d(
|
442 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
443 |
+
)
|
444 |
+
|
445 |
+
self.transformer_blocks = nn.ModuleList(
|
446 |
+
[
|
447 |
+
BasicTransformerBlock(
|
448 |
+
inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim
|
449 |
+
)
|
450 |
+
for d in range(depth)
|
451 |
+
]
|
452 |
+
)
|
453 |
+
|
454 |
+
self.proj_out = zero_module(
|
455 |
+
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
456 |
+
)
|
457 |
+
|
458 |
+
def forward(self, x, context=None):
|
459 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
460 |
+
b, c, h, w = x.shape
|
461 |
+
x_in = x
|
462 |
+
x = self.norm(x)
|
463 |
+
x = self.proj_in(x)
|
464 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
465 |
+
for block in self.transformer_blocks:
|
466 |
+
x = block(x, context=context)
|
467 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
468 |
+
x = self.proj_out(x)
|
469 |
+
return x + x_in
|
audioldm/latent_diffusion/ddim.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from audioldm.latent_diffusion.util import (
|
8 |
+
make_ddim_sampling_parameters,
|
9 |
+
make_ddim_timesteps,
|
10 |
+
noise_like,
|
11 |
+
extract_into_tensor,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
class DDIMSampler(object):
|
16 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
17 |
+
super().__init__()
|
18 |
+
self.model = model
|
19 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
20 |
+
self.schedule = schedule
|
21 |
+
|
22 |
+
def register_buffer(self, name, attr):
|
23 |
+
if type(attr) == torch.Tensor:
|
24 |
+
if attr.device != torch.device("cuda"):
|
25 |
+
attr = attr.to(torch.device("cuda"))
|
26 |
+
setattr(self, name, attr)
|
27 |
+
|
28 |
+
def make_schedule(
|
29 |
+
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
30 |
+
):
|
31 |
+
self.ddim_timesteps = make_ddim_timesteps(
|
32 |
+
ddim_discr_method=ddim_discretize,
|
33 |
+
num_ddim_timesteps=ddim_num_steps,
|
34 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
35 |
+
verbose=verbose,
|
36 |
+
)
|
37 |
+
alphas_cumprod = self.model.alphas_cumprod
|
38 |
+
assert (
|
39 |
+
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
40 |
+
), "alphas have to be defined for each timestep"
|
41 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
42 |
+
|
43 |
+
self.register_buffer("betas", to_torch(self.model.betas))
|
44 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
45 |
+
self.register_buffer(
|
46 |
+
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
47 |
+
)
|
48 |
+
|
49 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
50 |
+
self.register_buffer(
|
51 |
+
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
52 |
+
)
|
53 |
+
self.register_buffer(
|
54 |
+
"sqrt_one_minus_alphas_cumprod",
|
55 |
+
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
56 |
+
)
|
57 |
+
self.register_buffer(
|
58 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
59 |
+
)
|
60 |
+
self.register_buffer(
|
61 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
62 |
+
)
|
63 |
+
self.register_buffer(
|
64 |
+
"sqrt_recipm1_alphas_cumprod",
|
65 |
+
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
66 |
+
)
|
67 |
+
|
68 |
+
# ddim sampling parameters
|
69 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
70 |
+
alphacums=alphas_cumprod.cpu(),
|
71 |
+
ddim_timesteps=self.ddim_timesteps,
|
72 |
+
eta=ddim_eta,
|
73 |
+
verbose=verbose,
|
74 |
+
)
|
75 |
+
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
76 |
+
self.register_buffer("ddim_alphas", ddim_alphas)
|
77 |
+
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
78 |
+
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
79 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
80 |
+
(1 - self.alphas_cumprod_prev)
|
81 |
+
/ (1 - self.alphas_cumprod)
|
82 |
+
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
83 |
+
)
|
84 |
+
self.register_buffer(
|
85 |
+
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
86 |
+
)
|
87 |
+
|
88 |
+
@torch.no_grad()
|
89 |
+
def sample(
|
90 |
+
self,
|
91 |
+
S,
|
92 |
+
batch_size,
|
93 |
+
shape,
|
94 |
+
conditioning=None,
|
95 |
+
callback=None,
|
96 |
+
normals_sequence=None,
|
97 |
+
img_callback=None,
|
98 |
+
quantize_x0=False,
|
99 |
+
eta=0.0,
|
100 |
+
mask=None,
|
101 |
+
x0=None,
|
102 |
+
temperature=1.0,
|
103 |
+
noise_dropout=0.0,
|
104 |
+
score_corrector=None,
|
105 |
+
corrector_kwargs=None,
|
106 |
+
verbose=True,
|
107 |
+
x_T=None,
|
108 |
+
log_every_t=100,
|
109 |
+
unconditional_guidance_scale=1.0,
|
110 |
+
unconditional_conditioning=None,
|
111 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
112 |
+
**kwargs,
|
113 |
+
):
|
114 |
+
if conditioning is not None:
|
115 |
+
if isinstance(conditioning, dict):
|
116 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
117 |
+
if cbs != batch_size:
|
118 |
+
print(
|
119 |
+
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
if conditioning.shape[0] != batch_size:
|
123 |
+
print(
|
124 |
+
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
|
125 |
+
)
|
126 |
+
|
127 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
128 |
+
# sampling
|
129 |
+
C, H, W = shape
|
130 |
+
size = (batch_size, C, H, W)
|
131 |
+
samples, intermediates = self.ddim_sampling(
|
132 |
+
conditioning,
|
133 |
+
size,
|
134 |
+
callback=callback,
|
135 |
+
img_callback=img_callback,
|
136 |
+
quantize_denoised=quantize_x0,
|
137 |
+
mask=mask,
|
138 |
+
x0=x0,
|
139 |
+
ddim_use_original_steps=False,
|
140 |
+
noise_dropout=noise_dropout,
|
141 |
+
temperature=temperature,
|
142 |
+
score_corrector=score_corrector,
|
143 |
+
corrector_kwargs=corrector_kwargs,
|
144 |
+
x_T=x_T,
|
145 |
+
log_every_t=log_every_t,
|
146 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
147 |
+
unconditional_conditioning=unconditional_conditioning,
|
148 |
+
)
|
149 |
+
return samples, intermediates
|
150 |
+
|
151 |
+
@torch.no_grad()
|
152 |
+
def ddim_sampling(
|
153 |
+
self,
|
154 |
+
cond,
|
155 |
+
shape,
|
156 |
+
x_T=None,
|
157 |
+
ddim_use_original_steps=False,
|
158 |
+
callback=None,
|
159 |
+
timesteps=None,
|
160 |
+
quantize_denoised=False,
|
161 |
+
mask=None,
|
162 |
+
x0=None,
|
163 |
+
img_callback=None,
|
164 |
+
log_every_t=100,
|
165 |
+
temperature=1.0,
|
166 |
+
noise_dropout=0.0,
|
167 |
+
score_corrector=None,
|
168 |
+
corrector_kwargs=None,
|
169 |
+
unconditional_guidance_scale=1.0,
|
170 |
+
unconditional_conditioning=None,
|
171 |
+
):
|
172 |
+
device = self.model.betas.device
|
173 |
+
b = shape[0]
|
174 |
+
if x_T is None:
|
175 |
+
img = torch.randn(shape, device=device)
|
176 |
+
else:
|
177 |
+
img = x_T
|
178 |
+
|
179 |
+
if timesteps is None:
|
180 |
+
timesteps = (
|
181 |
+
self.ddpm_num_timesteps
|
182 |
+
if ddim_use_original_steps
|
183 |
+
else self.ddim_timesteps
|
184 |
+
)
|
185 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
186 |
+
subset_end = (
|
187 |
+
int(
|
188 |
+
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
189 |
+
* self.ddim_timesteps.shape[0]
|
190 |
+
)
|
191 |
+
- 1
|
192 |
+
)
|
193 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
194 |
+
|
195 |
+
intermediates = {"x_inter": [img], "pred_x0": [img]}
|
196 |
+
time_range = (
|
197 |
+
reversed(range(0, timesteps))
|
198 |
+
if ddim_use_original_steps
|
199 |
+
else np.flip(timesteps)
|
200 |
+
)
|
201 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
202 |
+
# print(f"Running DDIM Sampling with {total_steps} timesteps")
|
203 |
+
|
204 |
+
# iterator = gr.Progress().tqdm(time_range, desc="DDIM Sampler", total=total_steps)
|
205 |
+
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps, leave=False)
|
206 |
+
|
207 |
+
for i, step in enumerate(iterator):
|
208 |
+
index = total_steps - i - 1
|
209 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
210 |
+
if mask is not None:
|
211 |
+
assert x0 is not None
|
212 |
+
img_orig = self.model.q_sample(
|
213 |
+
x0, ts
|
214 |
+
) # TODO deterministic forward pass?
|
215 |
+
img = (
|
216 |
+
img_orig * mask + (1.0 - mask) * img
|
217 |
+
) # In the first sampling step, img is pure gaussian noise
|
218 |
+
|
219 |
+
outs = self.p_sample_ddim(
|
220 |
+
img,
|
221 |
+
cond,
|
222 |
+
ts,
|
223 |
+
index=index,
|
224 |
+
use_original_steps=ddim_use_original_steps,
|
225 |
+
quantize_denoised=quantize_denoised,
|
226 |
+
temperature=temperature,
|
227 |
+
noise_dropout=noise_dropout,
|
228 |
+
score_corrector=score_corrector,
|
229 |
+
corrector_kwargs=corrector_kwargs,
|
230 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
231 |
+
unconditional_conditioning=unconditional_conditioning,
|
232 |
+
)
|
233 |
+
img, pred_x0 = outs
|
234 |
+
if callback:
|
235 |
+
callback(i)
|
236 |
+
if img_callback:
|
237 |
+
img_callback(pred_x0, i)
|
238 |
+
|
239 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
240 |
+
intermediates["x_inter"].append(img)
|
241 |
+
intermediates["pred_x0"].append(pred_x0)
|
242 |
+
|
243 |
+
return img, intermediates
|
244 |
+
|
245 |
+
@torch.no_grad()
|
246 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
247 |
+
# fast, but does not allow for exact reconstruction
|
248 |
+
# t serves as an index to gather the correct alphas
|
249 |
+
if use_original_steps:
|
250 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
251 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
252 |
+
else:
|
253 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
254 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
255 |
+
|
256 |
+
if noise is None:
|
257 |
+
noise = torch.randn_like(x0)
|
258 |
+
|
259 |
+
return (
|
260 |
+
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
261 |
+
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
|
262 |
+
)
|
263 |
+
|
264 |
+
@torch.no_grad()
|
265 |
+
def decode(
|
266 |
+
self,
|
267 |
+
x_latent,
|
268 |
+
cond,
|
269 |
+
t_start,
|
270 |
+
unconditional_guidance_scale=1.0,
|
271 |
+
unconditional_conditioning=None,
|
272 |
+
use_original_steps=False,
|
273 |
+
):
|
274 |
+
|
275 |
+
timesteps = (
|
276 |
+
np.arange(self.ddpm_num_timesteps)
|
277 |
+
if use_original_steps
|
278 |
+
else self.ddim_timesteps
|
279 |
+
)
|
280 |
+
timesteps = timesteps[:t_start]
|
281 |
+
|
282 |
+
time_range = np.flip(timesteps)
|
283 |
+
total_steps = timesteps.shape[0]
|
284 |
+
# print(f"Running DDIM Sampling with {total_steps} timesteps")
|
285 |
+
|
286 |
+
# iterator = gr.Progress().tqdm(time_range, desc="Decoding image", total=total_steps)
|
287 |
+
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
|
288 |
+
x_dec = x_latent
|
289 |
+
|
290 |
+
for i, step in enumerate(iterator):
|
291 |
+
index = total_steps - i - 1
|
292 |
+
ts = torch.full(
|
293 |
+
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
|
294 |
+
)
|
295 |
+
x_dec, _ = self.p_sample_ddim(
|
296 |
+
x_dec,
|
297 |
+
cond,
|
298 |
+
ts,
|
299 |
+
index=index,
|
300 |
+
use_original_steps=use_original_steps,
|
301 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
302 |
+
unconditional_conditioning=unconditional_conditioning,
|
303 |
+
)
|
304 |
+
return x_dec
|
305 |
+
|
306 |
+
@torch.no_grad()
|
307 |
+
def p_sample_ddim(
|
308 |
+
self,
|
309 |
+
x,
|
310 |
+
c,
|
311 |
+
t,
|
312 |
+
index,
|
313 |
+
repeat_noise=False,
|
314 |
+
use_original_steps=False,
|
315 |
+
quantize_denoised=False,
|
316 |
+
temperature=1.0,
|
317 |
+
noise_dropout=0.0,
|
318 |
+
score_corrector=None,
|
319 |
+
corrector_kwargs=None,
|
320 |
+
unconditional_guidance_scale=1.0,
|
321 |
+
unconditional_conditioning=None,
|
322 |
+
):
|
323 |
+
b, *_, device = *x.shape, x.device
|
324 |
+
|
325 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
|
326 |
+
e_t = self.model.apply_model(x, t, c)
|
327 |
+
else:
|
328 |
+
x_in = torch.cat([x] * 2)
|
329 |
+
t_in = torch.cat([t] * 2)
|
330 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
331 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
332 |
+
# When unconditional_guidance_scale == 1: only e_t
|
333 |
+
# When unconditional_guidance_scale == 0: only unconditional
|
334 |
+
# When unconditional_guidance_scale > 1: add more unconditional guidance
|
335 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
336 |
+
|
337 |
+
if score_corrector is not None:
|
338 |
+
assert self.model.parameterization == "eps"
|
339 |
+
e_t = score_corrector.modify_score(
|
340 |
+
self.model, e_t, x, t, c, **corrector_kwargs
|
341 |
+
)
|
342 |
+
|
343 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
344 |
+
alphas_prev = (
|
345 |
+
self.model.alphas_cumprod_prev
|
346 |
+
if use_original_steps
|
347 |
+
else self.ddim_alphas_prev
|
348 |
+
)
|
349 |
+
sqrt_one_minus_alphas = (
|
350 |
+
self.model.sqrt_one_minus_alphas_cumprod
|
351 |
+
if use_original_steps
|
352 |
+
else self.ddim_sqrt_one_minus_alphas
|
353 |
+
)
|
354 |
+
sigmas = (
|
355 |
+
self.model.ddim_sigmas_for_original_num_steps
|
356 |
+
if use_original_steps
|
357 |
+
else self.ddim_sigmas
|
358 |
+
)
|
359 |
+
# select parameters corresponding to the currently considered timestep
|
360 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
361 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
362 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
363 |
+
sqrt_one_minus_at = torch.full(
|
364 |
+
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
365 |
+
)
|
366 |
+
|
367 |
+
# current prediction for x_0
|
368 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
369 |
+
if quantize_denoised:
|
370 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
371 |
+
# direction pointing to x_t
|
372 |
+
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
373 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
374 |
+
if noise_dropout > 0.0:
|
375 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
376 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise # TODO
|
377 |
+
return x_prev, pred_x0
|
audioldm/latent_diffusion/ddpm.py
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
import sys
|
9 |
+
import os
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import numpy as np
|
14 |
+
from contextlib import contextmanager
|
15 |
+
from functools import partial
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
from audioldm.utils import exists, default, count_params, instantiate_from_config
|
19 |
+
from audioldm.latent_diffusion.ema import LitEma
|
20 |
+
from audioldm.latent_diffusion.util import (
|
21 |
+
make_beta_schedule,
|
22 |
+
extract_into_tensor,
|
23 |
+
noise_like,
|
24 |
+
)
|
25 |
+
import soundfile as sf
|
26 |
+
import os
|
27 |
+
|
28 |
+
|
29 |
+
__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"}
|
30 |
+
|
31 |
+
|
32 |
+
def disabled_train(self, mode=True):
|
33 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
34 |
+
does not change anymore."""
|
35 |
+
return self
|
36 |
+
|
37 |
+
|
38 |
+
def uniform_on_device(r1, r2, shape, device):
|
39 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
40 |
+
|
41 |
+
|
42 |
+
class DiffusionWrapper(nn.Module):
|
43 |
+
def __init__(self, diff_model_config, conditioning_key):
|
44 |
+
super().__init__()
|
45 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
46 |
+
self.conditioning_key = conditioning_key
|
47 |
+
assert self.conditioning_key in [
|
48 |
+
None,
|
49 |
+
"concat",
|
50 |
+
"crossattn",
|
51 |
+
"hybrid",
|
52 |
+
"adm",
|
53 |
+
"film",
|
54 |
+
]
|
55 |
+
|
56 |
+
def forward(
|
57 |
+
self, x, t, c_concat: list = None, c_crossattn: list = None, c_film: list = None
|
58 |
+
):
|
59 |
+
x = x.contiguous()
|
60 |
+
t = t.contiguous()
|
61 |
+
|
62 |
+
if self.conditioning_key is None:
|
63 |
+
out = self.diffusion_model(x, t)
|
64 |
+
elif self.conditioning_key == "concat":
|
65 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
66 |
+
out = self.diffusion_model(xc, t)
|
67 |
+
elif self.conditioning_key == "crossattn":
|
68 |
+
cc = torch.cat(c_crossattn, 1)
|
69 |
+
out = self.diffusion_model(x, t, context=cc)
|
70 |
+
elif self.conditioning_key == "hybrid":
|
71 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
72 |
+
cc = torch.cat(c_crossattn, 1)
|
73 |
+
out = self.diffusion_model(xc, t, context=cc)
|
74 |
+
elif (
|
75 |
+
self.conditioning_key == "film"
|
76 |
+
): # The condition is assumed to be a global token, which wil pass through a linear layer and added with the time embedding for the FILM
|
77 |
+
cc = c_film[0].squeeze(1) # only has one token
|
78 |
+
out = self.diffusion_model(x, t, y=cc)
|
79 |
+
elif self.conditioning_key == "adm":
|
80 |
+
cc = c_crossattn[0]
|
81 |
+
out = self.diffusion_model(x, t, y=cc)
|
82 |
+
else:
|
83 |
+
raise NotImplementedError()
|
84 |
+
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
class DDPM(nn.Module):
|
89 |
+
# classic DDPM with Gaussian diffusion, in image space
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
unet_config,
|
93 |
+
timesteps=1000,
|
94 |
+
beta_schedule="linear",
|
95 |
+
loss_type="l2",
|
96 |
+
ckpt_path=None,
|
97 |
+
ignore_keys=[],
|
98 |
+
load_only_unet=False,
|
99 |
+
monitor="val/loss",
|
100 |
+
use_ema=True,
|
101 |
+
first_stage_key="image",
|
102 |
+
latent_t_size=256,
|
103 |
+
latent_f_size=16,
|
104 |
+
channels=3,
|
105 |
+
log_every_t=100,
|
106 |
+
clip_denoised=True,
|
107 |
+
linear_start=1e-4,
|
108 |
+
linear_end=2e-2,
|
109 |
+
cosine_s=8e-3,
|
110 |
+
given_betas=None,
|
111 |
+
original_elbo_weight=0.0,
|
112 |
+
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
113 |
+
l_simple_weight=1.0,
|
114 |
+
conditioning_key=None,
|
115 |
+
parameterization="eps", # all assuming fixed variance schedules
|
116 |
+
scheduler_config=None,
|
117 |
+
use_positional_encodings=False,
|
118 |
+
learn_logvar=False,
|
119 |
+
logvar_init=0.0,
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
assert parameterization in [
|
123 |
+
"eps",
|
124 |
+
"x0",
|
125 |
+
], 'currently only supporting "eps" and "x0"'
|
126 |
+
self.parameterization = parameterization
|
127 |
+
self.state = None
|
128 |
+
# print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
129 |
+
self.cond_stage_model = None
|
130 |
+
self.clip_denoised = clip_denoised
|
131 |
+
self.log_every_t = log_every_t
|
132 |
+
self.first_stage_key = first_stage_key
|
133 |
+
|
134 |
+
self.latent_t_size = latent_t_size
|
135 |
+
self.latent_f_size = latent_f_size
|
136 |
+
|
137 |
+
self.channels = channels
|
138 |
+
self.use_positional_encodings = use_positional_encodings
|
139 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
140 |
+
count_params(self.model, verbose=True)
|
141 |
+
self.use_ema = use_ema
|
142 |
+
if self.use_ema:
|
143 |
+
self.model_ema = LitEma(self.model)
|
144 |
+
# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
145 |
+
|
146 |
+
self.use_scheduler = scheduler_config is not None
|
147 |
+
if self.use_scheduler:
|
148 |
+
self.scheduler_config = scheduler_config
|
149 |
+
|
150 |
+
self.v_posterior = v_posterior
|
151 |
+
self.original_elbo_weight = original_elbo_weight
|
152 |
+
self.l_simple_weight = l_simple_weight
|
153 |
+
|
154 |
+
if monitor is not None:
|
155 |
+
self.monitor = monitor
|
156 |
+
|
157 |
+
self.register_schedule(
|
158 |
+
given_betas=given_betas,
|
159 |
+
beta_schedule=beta_schedule,
|
160 |
+
timesteps=timesteps,
|
161 |
+
linear_start=linear_start,
|
162 |
+
linear_end=linear_end,
|
163 |
+
cosine_s=cosine_s,
|
164 |
+
)
|
165 |
+
|
166 |
+
self.loss_type = loss_type
|
167 |
+
|
168 |
+
self.learn_logvar = learn_logvar
|
169 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
170 |
+
if self.learn_logvar:
|
171 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
172 |
+
else:
|
173 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=False)
|
174 |
+
|
175 |
+
self.logger_save_dir = None
|
176 |
+
self.logger_project = None
|
177 |
+
self.logger_version = None
|
178 |
+
self.label_indices_total = None
|
179 |
+
# To avoid the system cannot find metric value for checkpoint
|
180 |
+
self.metrics_buffer = {
|
181 |
+
"val/kullback_leibler_divergence_sigmoid": 15.0,
|
182 |
+
"val/kullback_leibler_divergence_softmax": 10.0,
|
183 |
+
"val/psnr": 0.0,
|
184 |
+
"val/ssim": 0.0,
|
185 |
+
"val/inception_score_mean": 1.0,
|
186 |
+
"val/inception_score_std": 0.0,
|
187 |
+
"val/kernel_inception_distance_mean": 0.0,
|
188 |
+
"val/kernel_inception_distance_std": 0.0,
|
189 |
+
"val/frechet_inception_distance": 133.0,
|
190 |
+
"val/frechet_audio_distance": 32.0,
|
191 |
+
}
|
192 |
+
self.initial_learning_rate = None
|
193 |
+
|
194 |
+
def get_log_dir(self):
|
195 |
+
if (
|
196 |
+
self.logger_save_dir is None
|
197 |
+
and self.logger_project is None
|
198 |
+
and self.logger_version is None
|
199 |
+
):
|
200 |
+
return os.path.join(
|
201 |
+
self.logger.save_dir, self.logger._project, self.logger.version
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
return os.path.join(
|
205 |
+
self.logger_save_dir, self.logger_project, self.logger_version
|
206 |
+
)
|
207 |
+
|
208 |
+
def set_log_dir(self, save_dir, project, version):
|
209 |
+
self.logger_save_dir = save_dir
|
210 |
+
self.logger_project = project
|
211 |
+
self.logger_version = version
|
212 |
+
|
213 |
+
def register_schedule(
|
214 |
+
self,
|
215 |
+
given_betas=None,
|
216 |
+
beta_schedule="linear",
|
217 |
+
timesteps=1000,
|
218 |
+
linear_start=1e-4,
|
219 |
+
linear_end=2e-2,
|
220 |
+
cosine_s=8e-3,
|
221 |
+
):
|
222 |
+
if exists(given_betas):
|
223 |
+
betas = given_betas
|
224 |
+
else:
|
225 |
+
betas = make_beta_schedule(
|
226 |
+
beta_schedule,
|
227 |
+
timesteps,
|
228 |
+
linear_start=linear_start,
|
229 |
+
linear_end=linear_end,
|
230 |
+
cosine_s=cosine_s,
|
231 |
+
)
|
232 |
+
alphas = 1.0 - betas
|
233 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
234 |
+
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
|
235 |
+
|
236 |
+
(timesteps,) = betas.shape
|
237 |
+
self.num_timesteps = int(timesteps)
|
238 |
+
self.linear_start = linear_start
|
239 |
+
self.linear_end = linear_end
|
240 |
+
assert (
|
241 |
+
alphas_cumprod.shape[0] == self.num_timesteps
|
242 |
+
), "alphas have to be defined for each timestep"
|
243 |
+
|
244 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
245 |
+
|
246 |
+
self.register_buffer("betas", to_torch(betas))
|
247 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
248 |
+
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
|
249 |
+
|
250 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
251 |
+
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
|
252 |
+
self.register_buffer(
|
253 |
+
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
|
254 |
+
)
|
255 |
+
self.register_buffer(
|
256 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
|
257 |
+
)
|
258 |
+
self.register_buffer(
|
259 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
|
260 |
+
)
|
261 |
+
self.register_buffer(
|
262 |
+
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
|
263 |
+
)
|
264 |
+
|
265 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
266 |
+
posterior_variance = (1 - self.v_posterior) * betas * (
|
267 |
+
1.0 - alphas_cumprod_prev
|
268 |
+
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
|
269 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
270 |
+
self.register_buffer("posterior_variance", to_torch(posterior_variance))
|
271 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
272 |
+
self.register_buffer(
|
273 |
+
"posterior_log_variance_clipped",
|
274 |
+
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
|
275 |
+
)
|
276 |
+
self.register_buffer(
|
277 |
+
"posterior_mean_coef1",
|
278 |
+
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
|
279 |
+
)
|
280 |
+
self.register_buffer(
|
281 |
+
"posterior_mean_coef2",
|
282 |
+
to_torch(
|
283 |
+
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
|
284 |
+
),
|
285 |
+
)
|
286 |
+
|
287 |
+
if self.parameterization == "eps":
|
288 |
+
lvlb_weights = self.betas**2 / (
|
289 |
+
2
|
290 |
+
* self.posterior_variance
|
291 |
+
* to_torch(alphas)
|
292 |
+
* (1 - self.alphas_cumprod)
|
293 |
+
)
|
294 |
+
elif self.parameterization == "x0":
|
295 |
+
lvlb_weights = (
|
296 |
+
0.5
|
297 |
+
* np.sqrt(torch.Tensor(alphas_cumprod))
|
298 |
+
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
raise NotImplementedError("mu not supported")
|
302 |
+
# TODO how to choose this term
|
303 |
+
lvlb_weights[0] = lvlb_weights[1]
|
304 |
+
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
|
305 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
306 |
+
|
307 |
+
@contextmanager
|
308 |
+
def ema_scope(self, context=None):
|
309 |
+
if self.use_ema:
|
310 |
+
self.model_ema.store(self.model.parameters())
|
311 |
+
self.model_ema.copy_to(self.model)
|
312 |
+
if context is not None:
|
313 |
+
# print(f"{context}: Switched to EMA weights")
|
314 |
+
pass
|
315 |
+
try:
|
316 |
+
yield None
|
317 |
+
finally:
|
318 |
+
if self.use_ema:
|
319 |
+
self.model_ema.restore(self.model.parameters())
|
320 |
+
if context is not None:
|
321 |
+
# print(f"{context}: Restored training weights")
|
322 |
+
pass
|
323 |
+
|
324 |
+
def q_mean_variance(self, x_start, t):
|
325 |
+
"""
|
326 |
+
Get the distribution q(x_t | x_0).
|
327 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
328 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
329 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
330 |
+
"""
|
331 |
+
mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
332 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
333 |
+
log_variance = extract_into_tensor(
|
334 |
+
self.log_one_minus_alphas_cumprod, t, x_start.shape
|
335 |
+
)
|
336 |
+
return mean, variance, log_variance
|
337 |
+
|
338 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
339 |
+
return (
|
340 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
341 |
+
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
342 |
+
* noise
|
343 |
+
)
|
344 |
+
|
345 |
+
def q_posterior(self, x_start, x_t, t):
|
346 |
+
posterior_mean = (
|
347 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
348 |
+
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
349 |
+
)
|
350 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
351 |
+
posterior_log_variance_clipped = extract_into_tensor(
|
352 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
353 |
+
)
|
354 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
355 |
+
|
356 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
357 |
+
model_out = self.model(x, t)
|
358 |
+
if self.parameterization == "eps":
|
359 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
360 |
+
elif self.parameterization == "x0":
|
361 |
+
x_recon = model_out
|
362 |
+
if clip_denoised:
|
363 |
+
x_recon.clamp_(-1.0, 1.0)
|
364 |
+
|
365 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
|
366 |
+
x_start=x_recon, x_t=x, t=t
|
367 |
+
)
|
368 |
+
return model_mean, posterior_variance, posterior_log_variance
|
369 |
+
|
370 |
+
@torch.no_grad()
|
371 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
372 |
+
b, *_, device = *x.shape, x.device
|
373 |
+
model_mean, _, model_log_variance = self.p_mean_variance(
|
374 |
+
x=x, t=t, clip_denoised=clip_denoised
|
375 |
+
)
|
376 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
377 |
+
# no noise when t == 0
|
378 |
+
nonzero_mask = (
|
379 |
+
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
|
380 |
+
)
|
381 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
382 |
+
|
383 |
+
@torch.no_grad()
|
384 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
385 |
+
device = self.betas.device
|
386 |
+
b = shape[0]
|
387 |
+
img = torch.randn(shape, device=device)
|
388 |
+
intermediates = [img]
|
389 |
+
for i in tqdm(
|
390 |
+
reversed(range(0, self.num_timesteps)),
|
391 |
+
desc="Sampling t",
|
392 |
+
total=self.num_timesteps,
|
393 |
+
):
|
394 |
+
img = self.p_sample(
|
395 |
+
img,
|
396 |
+
torch.full((b,), i, device=device, dtype=torch.long),
|
397 |
+
clip_denoised=self.clip_denoised,
|
398 |
+
)
|
399 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
400 |
+
intermediates.append(img)
|
401 |
+
if return_intermediates:
|
402 |
+
return img, intermediates
|
403 |
+
return img
|
404 |
+
|
405 |
+
@torch.no_grad()
|
406 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
407 |
+
shape = (batch_size, channels, self.latent_t_size, self.latent_f_size)
|
408 |
+
channels = self.channels
|
409 |
+
return self.p_sample_loop(shape, return_intermediates=return_intermediates)
|
410 |
+
|
411 |
+
def q_sample(self, x_start, t, noise=None):
|
412 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
413 |
+
return (
|
414 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
415 |
+
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
416 |
+
* noise
|
417 |
+
)
|
418 |
+
|
419 |
+
def forward(self, x, *args, **kwargs):
|
420 |
+
t = torch.randint(
|
421 |
+
0, self.num_timesteps, (x.shape[0],), device=self.device
|
422 |
+
).long()
|
423 |
+
return self.p_losses(x, t, *args, **kwargs)
|
424 |
+
|
425 |
+
def get_input(self, batch, k):
|
426 |
+
# fbank, log_magnitudes_stft, label_indices, fname, waveform, clip_label, text = batch
|
427 |
+
fbank, log_magnitudes_stft, label_indices, fname, waveform, text = batch
|
428 |
+
ret = {}
|
429 |
+
|
430 |
+
ret["fbank"] = (
|
431 |
+
fbank.unsqueeze(1).to(memory_format=torch.contiguous_format).float()
|
432 |
+
)
|
433 |
+
ret["stft"] = log_magnitudes_stft.to(
|
434 |
+
memory_format=torch.contiguous_format
|
435 |
+
).float()
|
436 |
+
# ret["clip_label"] = clip_label.to(memory_format=torch.contiguous_format).float()
|
437 |
+
ret["waveform"] = waveform.to(memory_format=torch.contiguous_format).float()
|
438 |
+
ret["text"] = list(text)
|
439 |
+
ret["fname"] = fname
|
440 |
+
|
441 |
+
return ret[k]
|
audioldm/latent_diffusion/ema.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError("Decay must be between 0 and 1")
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer("decay", torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer(
|
14 |
+
"num_updates",
|
15 |
+
torch.tensor(0, dtype=torch.int)
|
16 |
+
if use_num_upates
|
17 |
+
else torch.tensor(-1, dtype=torch.int),
|
18 |
+
)
|
19 |
+
|
20 |
+
for name, p in model.named_parameters():
|
21 |
+
if p.requires_grad:
|
22 |
+
# remove as '.'-character is not allowed in buffers
|
23 |
+
s_name = name.replace(".", "")
|
24 |
+
self.m_name2s_name.update({name: s_name})
|
25 |
+
self.register_buffer(s_name, p.clone().detach().data)
|
26 |
+
|
27 |
+
self.collected_params = []
|
28 |
+
|
29 |
+
def forward(self, model):
|
30 |
+
decay = self.decay
|
31 |
+
|
32 |
+
if self.num_updates >= 0:
|
33 |
+
self.num_updates += 1
|
34 |
+
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
35 |
+
|
36 |
+
one_minus_decay = 1.0 - decay
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
m_param = dict(model.named_parameters())
|
40 |
+
shadow_params = dict(self.named_buffers())
|
41 |
+
|
42 |
+
for key in m_param:
|
43 |
+
if m_param[key].requires_grad:
|
44 |
+
sname = self.m_name2s_name[key]
|
45 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
46 |
+
shadow_params[sname].sub_(
|
47 |
+
one_minus_decay * (shadow_params[sname] - m_param[key])
|
48 |
+
)
|
49 |
+
else:
|
50 |
+
assert not key in self.m_name2s_name
|
51 |
+
|
52 |
+
def copy_to(self, model):
|
53 |
+
m_param = dict(model.named_parameters())
|
54 |
+
shadow_params = dict(self.named_buffers())
|
55 |
+
for key in m_param:
|
56 |
+
if m_param[key].requires_grad:
|
57 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
58 |
+
else:
|
59 |
+
assert not key in self.m_name2s_name
|
60 |
+
|
61 |
+
def store(self, parameters):
|
62 |
+
"""
|
63 |
+
Save the current parameters for restoring later.
|
64 |
+
Args:
|
65 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
66 |
+
temporarily stored.
|
67 |
+
"""
|
68 |
+
self.collected_params = [param.clone() for param in parameters]
|
69 |
+
|
70 |
+
def restore(self, parameters):
|
71 |
+
"""
|
72 |
+
Restore the parameters stored with the `store` method.
|
73 |
+
Useful to validate the model with EMA parameters without affecting the
|
74 |
+
original optimization process. Store the parameters before the
|
75 |
+
`copy_to` method. After validation (or model saving), use this to
|
76 |
+
restore the former parameters.
|
77 |
+
Args:
|
78 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
79 |
+
updated with the stored parameters.
|
80 |
+
"""
|
81 |
+
for c_param, param in zip(self.collected_params, parameters):
|
82 |
+
param.data.copy_(c_param.data)
|
audioldm/latent_diffusion/openaimodel.py
ADDED
@@ -0,0 +1,1069 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
import math
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch as th
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from audioldm.latent_diffusion.util import (
|
10 |
+
checkpoint,
|
11 |
+
conv_nd,
|
12 |
+
linear,
|
13 |
+
avg_pool_nd,
|
14 |
+
zero_module,
|
15 |
+
normalization,
|
16 |
+
timestep_embedding,
|
17 |
+
)
|
18 |
+
from audioldm.latent_diffusion.attention import SpatialTransformer
|
19 |
+
|
20 |
+
|
21 |
+
# dummy replace
|
22 |
+
def convert_module_to_f16(x):
|
23 |
+
pass
|
24 |
+
|
25 |
+
|
26 |
+
def convert_module_to_f32(x):
|
27 |
+
pass
|
28 |
+
|
29 |
+
|
30 |
+
## go
|
31 |
+
class AttentionPool2d(nn.Module):
|
32 |
+
"""
|
33 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
spacial_dim: int,
|
39 |
+
embed_dim: int,
|
40 |
+
num_heads_channels: int,
|
41 |
+
output_dim: int = None,
|
42 |
+
):
|
43 |
+
super().__init__()
|
44 |
+
self.positional_embedding = nn.Parameter(
|
45 |
+
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
|
46 |
+
)
|
47 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
48 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
49 |
+
self.num_heads = embed_dim // num_heads_channels
|
50 |
+
self.attention = QKVAttention(self.num_heads)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
b, c, *_spatial = x.shape
|
54 |
+
x = x.reshape(b, c, -1).contiguous() # NC(HW)
|
55 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
56 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
57 |
+
x = self.qkv_proj(x)
|
58 |
+
x = self.attention(x)
|
59 |
+
x = self.c_proj(x)
|
60 |
+
return x[:, :, 0]
|
61 |
+
|
62 |
+
|
63 |
+
class TimestepBlock(nn.Module):
|
64 |
+
"""
|
65 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
66 |
+
"""
|
67 |
+
|
68 |
+
@abstractmethod
|
69 |
+
def forward(self, x, emb):
|
70 |
+
"""
|
71 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
72 |
+
"""
|
73 |
+
|
74 |
+
|
75 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
76 |
+
"""
|
77 |
+
A sequential module that passes timestep embeddings to the children that
|
78 |
+
support it as an extra input.
|
79 |
+
"""
|
80 |
+
|
81 |
+
def forward(self, x, emb, context=None):
|
82 |
+
for layer in self:
|
83 |
+
if isinstance(layer, TimestepBlock):
|
84 |
+
x = layer(x, emb)
|
85 |
+
elif isinstance(layer, SpatialTransformer):
|
86 |
+
x = layer(x, context)
|
87 |
+
else:
|
88 |
+
x = layer(x)
|
89 |
+
return x
|
90 |
+
|
91 |
+
|
92 |
+
class Upsample(nn.Module):
|
93 |
+
"""
|
94 |
+
An upsampling layer with an optional convolution.
|
95 |
+
:param channels: channels in the inputs and outputs.
|
96 |
+
:param use_conv: a bool determining if a convolution is applied.
|
97 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
98 |
+
upsampling occurs in the inner-two dimensions.
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
102 |
+
super().__init__()
|
103 |
+
self.channels = channels
|
104 |
+
self.out_channels = out_channels or channels
|
105 |
+
self.use_conv = use_conv
|
106 |
+
self.dims = dims
|
107 |
+
if use_conv:
|
108 |
+
self.conv = conv_nd(
|
109 |
+
dims, self.channels, self.out_channels, 3, padding=padding
|
110 |
+
)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
assert x.shape[1] == self.channels
|
114 |
+
if self.dims == 3:
|
115 |
+
x = F.interpolate(
|
116 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
120 |
+
if self.use_conv:
|
121 |
+
x = self.conv(x)
|
122 |
+
return x
|
123 |
+
|
124 |
+
|
125 |
+
class TransposedUpsample(nn.Module):
|
126 |
+
"Learned 2x upsampling without padding"
|
127 |
+
|
128 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
129 |
+
super().__init__()
|
130 |
+
self.channels = channels
|
131 |
+
self.out_channels = out_channels or channels
|
132 |
+
|
133 |
+
self.up = nn.ConvTranspose2d(
|
134 |
+
self.channels, self.out_channels, kernel_size=ks, stride=2
|
135 |
+
)
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
return self.up(x)
|
139 |
+
|
140 |
+
|
141 |
+
class Downsample(nn.Module):
|
142 |
+
"""
|
143 |
+
A downsampling layer with an optional convolution.
|
144 |
+
:param channels: channels in the inputs and outputs.
|
145 |
+
:param use_conv: a bool determining if a convolution is applied.
|
146 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
147 |
+
downsampling occurs in the inner-two dimensions.
|
148 |
+
"""
|
149 |
+
|
150 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
151 |
+
super().__init__()
|
152 |
+
self.channels = channels
|
153 |
+
self.out_channels = out_channels or channels
|
154 |
+
self.use_conv = use_conv
|
155 |
+
self.dims = dims
|
156 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
157 |
+
if use_conv:
|
158 |
+
self.op = conv_nd(
|
159 |
+
dims,
|
160 |
+
self.channels,
|
161 |
+
self.out_channels,
|
162 |
+
3,
|
163 |
+
stride=stride,
|
164 |
+
padding=padding,
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
assert self.channels == self.out_channels
|
168 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
169 |
+
|
170 |
+
def forward(self, x):
|
171 |
+
assert x.shape[1] == self.channels
|
172 |
+
return self.op(x)
|
173 |
+
|
174 |
+
|
175 |
+
class ResBlock(TimestepBlock):
|
176 |
+
"""
|
177 |
+
A residual block that can optionally change the number of channels.
|
178 |
+
:param channels: the number of input channels.
|
179 |
+
:param emb_channels: the number of timestep embedding channels.
|
180 |
+
:param dropout: the rate of dropout.
|
181 |
+
:param out_channels: if specified, the number of out channels.
|
182 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
183 |
+
convolution instead of a smaller 1x1 convolution to change the
|
184 |
+
channels in the skip connection.
|
185 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
186 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
187 |
+
:param up: if True, use this block for upsampling.
|
188 |
+
:param down: if True, use this block for downsampling.
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
channels,
|
194 |
+
emb_channels,
|
195 |
+
dropout,
|
196 |
+
out_channels=None,
|
197 |
+
use_conv=False,
|
198 |
+
use_scale_shift_norm=False,
|
199 |
+
dims=2,
|
200 |
+
use_checkpoint=False,
|
201 |
+
up=False,
|
202 |
+
down=False,
|
203 |
+
):
|
204 |
+
super().__init__()
|
205 |
+
self.channels = channels
|
206 |
+
self.emb_channels = emb_channels
|
207 |
+
self.dropout = dropout
|
208 |
+
self.out_channels = out_channels or channels
|
209 |
+
self.use_conv = use_conv
|
210 |
+
self.use_checkpoint = use_checkpoint
|
211 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
212 |
+
|
213 |
+
self.in_layers = nn.Sequential(
|
214 |
+
normalization(channels),
|
215 |
+
nn.SiLU(),
|
216 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
217 |
+
)
|
218 |
+
|
219 |
+
self.updown = up or down
|
220 |
+
|
221 |
+
if up:
|
222 |
+
self.h_upd = Upsample(channels, False, dims)
|
223 |
+
self.x_upd = Upsample(channels, False, dims)
|
224 |
+
elif down:
|
225 |
+
self.h_upd = Downsample(channels, False, dims)
|
226 |
+
self.x_upd = Downsample(channels, False, dims)
|
227 |
+
else:
|
228 |
+
self.h_upd = self.x_upd = nn.Identity()
|
229 |
+
|
230 |
+
self.emb_layers = nn.Sequential(
|
231 |
+
nn.SiLU(),
|
232 |
+
linear(
|
233 |
+
emb_channels,
|
234 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
235 |
+
),
|
236 |
+
)
|
237 |
+
self.out_layers = nn.Sequential(
|
238 |
+
normalization(self.out_channels),
|
239 |
+
nn.SiLU(),
|
240 |
+
nn.Dropout(p=dropout),
|
241 |
+
zero_module(
|
242 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
243 |
+
),
|
244 |
+
)
|
245 |
+
|
246 |
+
if self.out_channels == channels:
|
247 |
+
self.skip_connection = nn.Identity()
|
248 |
+
elif use_conv:
|
249 |
+
self.skip_connection = conv_nd(
|
250 |
+
dims, channels, self.out_channels, 3, padding=1
|
251 |
+
)
|
252 |
+
else:
|
253 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
254 |
+
|
255 |
+
def forward(self, x, emb):
|
256 |
+
"""
|
257 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
258 |
+
:param x: an [N x C x ...] Tensor of features.
|
259 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
260 |
+
:return: an [N x C x ...] Tensor of outputs.
|
261 |
+
"""
|
262 |
+
return checkpoint(
|
263 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
264 |
+
)
|
265 |
+
|
266 |
+
def _forward(self, x, emb):
|
267 |
+
if self.updown:
|
268 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
269 |
+
h = in_rest(x)
|
270 |
+
h = self.h_upd(h)
|
271 |
+
x = self.x_upd(x)
|
272 |
+
h = in_conv(h)
|
273 |
+
else:
|
274 |
+
h = self.in_layers(x)
|
275 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
276 |
+
while len(emb_out.shape) < len(h.shape):
|
277 |
+
emb_out = emb_out[..., None]
|
278 |
+
if self.use_scale_shift_norm:
|
279 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
280 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
281 |
+
h = out_norm(h) * (1 + scale) + shift
|
282 |
+
h = out_rest(h)
|
283 |
+
else:
|
284 |
+
h = h + emb_out
|
285 |
+
h = self.out_layers(h)
|
286 |
+
return self.skip_connection(x) + h
|
287 |
+
|
288 |
+
|
289 |
+
class AttentionBlock(nn.Module):
|
290 |
+
"""
|
291 |
+
An attention block that allows spatial positions to attend to each other.
|
292 |
+
Originally ported from here, but adapted to the N-d case.
|
293 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
294 |
+
"""
|
295 |
+
|
296 |
+
def __init__(
|
297 |
+
self,
|
298 |
+
channels,
|
299 |
+
num_heads=1,
|
300 |
+
num_head_channels=-1,
|
301 |
+
use_checkpoint=False,
|
302 |
+
use_new_attention_order=False,
|
303 |
+
):
|
304 |
+
super().__init__()
|
305 |
+
self.channels = channels
|
306 |
+
if num_head_channels == -1:
|
307 |
+
self.num_heads = num_heads
|
308 |
+
else:
|
309 |
+
assert (
|
310 |
+
channels % num_head_channels == 0
|
311 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
312 |
+
self.num_heads = channels // num_head_channels
|
313 |
+
self.use_checkpoint = use_checkpoint
|
314 |
+
self.norm = normalization(channels)
|
315 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
316 |
+
if use_new_attention_order:
|
317 |
+
# split qkv before split heads
|
318 |
+
self.attention = QKVAttention(self.num_heads)
|
319 |
+
else:
|
320 |
+
# split heads before split qkv
|
321 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
322 |
+
|
323 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
324 |
+
|
325 |
+
def forward(self, x):
|
326 |
+
return checkpoint(
|
327 |
+
self._forward, (x,), self.parameters(), True
|
328 |
+
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
329 |
+
# return pt_checkpoint(self._forward, x) # pytorch
|
330 |
+
|
331 |
+
def _forward(self, x):
|
332 |
+
b, c, *spatial = x.shape
|
333 |
+
x = x.reshape(b, c, -1).contiguous()
|
334 |
+
qkv = self.qkv(self.norm(x)).contiguous()
|
335 |
+
h = self.attention(qkv).contiguous()
|
336 |
+
h = self.proj_out(h).contiguous()
|
337 |
+
return (x + h).reshape(b, c, *spatial).contiguous()
|
338 |
+
|
339 |
+
|
340 |
+
def count_flops_attn(model, _x, y):
|
341 |
+
"""
|
342 |
+
A counter for the `thop` package to count the operations in an
|
343 |
+
attention operation.
|
344 |
+
Meant to be used like:
|
345 |
+
macs, params = thop.profile(
|
346 |
+
model,
|
347 |
+
inputs=(inputs, timestamps),
|
348 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
349 |
+
)
|
350 |
+
"""
|
351 |
+
b, c, *spatial = y[0].shape
|
352 |
+
num_spatial = int(np.prod(spatial))
|
353 |
+
# We perform two matmuls with the same number of ops.
|
354 |
+
# The first computes the weight matrix, the second computes
|
355 |
+
# the combination of the value vectors.
|
356 |
+
matmul_ops = 2 * b * (num_spatial**2) * c
|
357 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
358 |
+
|
359 |
+
|
360 |
+
class QKVAttentionLegacy(nn.Module):
|
361 |
+
"""
|
362 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
363 |
+
"""
|
364 |
+
|
365 |
+
def __init__(self, n_heads):
|
366 |
+
super().__init__()
|
367 |
+
self.n_heads = n_heads
|
368 |
+
|
369 |
+
def forward(self, qkv):
|
370 |
+
"""
|
371 |
+
Apply QKV attention.
|
372 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
373 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
374 |
+
"""
|
375 |
+
bs, width, length = qkv.shape
|
376 |
+
assert width % (3 * self.n_heads) == 0
|
377 |
+
ch = width // (3 * self.n_heads)
|
378 |
+
q, k, v = (
|
379 |
+
qkv.reshape(bs * self.n_heads, ch * 3, length).contiguous().split(ch, dim=1)
|
380 |
+
)
|
381 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
382 |
+
weight = th.einsum(
|
383 |
+
"bct,bcs->bts", q * scale, k * scale
|
384 |
+
) # More stable with f16 than dividing afterwards
|
385 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
386 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
387 |
+
return a.reshape(bs, -1, length).contiguous()
|
388 |
+
|
389 |
+
@staticmethod
|
390 |
+
def count_flops(model, _x, y):
|
391 |
+
return count_flops_attn(model, _x, y)
|
392 |
+
|
393 |
+
|
394 |
+
class QKVAttention(nn.Module):
|
395 |
+
"""
|
396 |
+
A module which performs QKV attention and splits in a different order.
|
397 |
+
"""
|
398 |
+
|
399 |
+
def __init__(self, n_heads):
|
400 |
+
super().__init__()
|
401 |
+
self.n_heads = n_heads
|
402 |
+
|
403 |
+
def forward(self, qkv):
|
404 |
+
"""
|
405 |
+
Apply QKV attention.
|
406 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
407 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
408 |
+
"""
|
409 |
+
bs, width, length = qkv.shape
|
410 |
+
assert width % (3 * self.n_heads) == 0
|
411 |
+
ch = width // (3 * self.n_heads)
|
412 |
+
q, k, v = qkv.chunk(3, dim=1)
|
413 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
414 |
+
weight = th.einsum(
|
415 |
+
"bct,bcs->bts",
|
416 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
417 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
418 |
+
) # More stable with f16 than dividing afterwards
|
419 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
420 |
+
a = th.einsum(
|
421 |
+
"bts,bcs->bct",
|
422 |
+
weight,
|
423 |
+
v.reshape(bs * self.n_heads, ch, length).contiguous(),
|
424 |
+
)
|
425 |
+
return a.reshape(bs, -1, length).contiguous()
|
426 |
+
|
427 |
+
@staticmethod
|
428 |
+
def count_flops(model, _x, y):
|
429 |
+
return count_flops_attn(model, _x, y)
|
430 |
+
|
431 |
+
|
432 |
+
class UNetModel(nn.Module):
|
433 |
+
"""
|
434 |
+
The full UNet model with attention and timestep embedding.
|
435 |
+
:param in_channels: channels in the input Tensor.
|
436 |
+
:param model_channels: base channel count for the model.
|
437 |
+
:param out_channels: channels in the output Tensor.
|
438 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
439 |
+
:param attention_resolutions: a collection of downsample rates at which
|
440 |
+
attention will take place. May be a set, list, or tuple.
|
441 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
442 |
+
will be used.
|
443 |
+
:param dropout: the dropout probability.
|
444 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
445 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
446 |
+
downsampling.
|
447 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
448 |
+
:param num_classes: if specified (as an int), then this model will be
|
449 |
+
class-conditional with `num_classes` classes.
|
450 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
451 |
+
:param num_heads: the number of attention heads in each attention layer.
|
452 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
453 |
+
a fixed channel width per attention head.
|
454 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
455 |
+
of heads for upsampling. Deprecated.
|
456 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
457 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
458 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
459 |
+
increased efficiency.
|
460 |
+
"""
|
461 |
+
|
462 |
+
def __init__(
|
463 |
+
self,
|
464 |
+
image_size,
|
465 |
+
in_channels,
|
466 |
+
model_channels,
|
467 |
+
out_channels,
|
468 |
+
num_res_blocks,
|
469 |
+
attention_resolutions,
|
470 |
+
dropout=0,
|
471 |
+
channel_mult=(1, 2, 4, 8),
|
472 |
+
conv_resample=True,
|
473 |
+
dims=2,
|
474 |
+
num_classes=None,
|
475 |
+
extra_film_condition_dim=None,
|
476 |
+
use_checkpoint=False,
|
477 |
+
use_fp16=False,
|
478 |
+
num_heads=-1,
|
479 |
+
num_head_channels=-1,
|
480 |
+
num_heads_upsample=-1,
|
481 |
+
use_scale_shift_norm=False,
|
482 |
+
extra_film_use_concat=False, # If true, concatenate extrafilm condition with time embedding, else addition
|
483 |
+
resblock_updown=False,
|
484 |
+
use_new_attention_order=False,
|
485 |
+
use_spatial_transformer=False, # custom transformer support
|
486 |
+
transformer_depth=1, # custom transformer support
|
487 |
+
context_dim=None, # custom transformer support
|
488 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
489 |
+
legacy=True,
|
490 |
+
):
|
491 |
+
super().__init__()
|
492 |
+
if num_heads_upsample == -1:
|
493 |
+
num_heads_upsample = num_heads
|
494 |
+
|
495 |
+
if num_heads == -1:
|
496 |
+
assert (
|
497 |
+
num_head_channels != -1
|
498 |
+
), "Either num_heads or num_head_channels has to be set"
|
499 |
+
|
500 |
+
if num_head_channels == -1:
|
501 |
+
assert (
|
502 |
+
num_heads != -1
|
503 |
+
), "Either num_heads or num_head_channels has to be set"
|
504 |
+
|
505 |
+
self.image_size = image_size
|
506 |
+
self.in_channels = in_channels
|
507 |
+
self.model_channels = model_channels
|
508 |
+
self.out_channels = out_channels
|
509 |
+
self.num_res_blocks = num_res_blocks
|
510 |
+
self.attention_resolutions = attention_resolutions
|
511 |
+
self.dropout = dropout
|
512 |
+
self.channel_mult = channel_mult
|
513 |
+
self.conv_resample = conv_resample
|
514 |
+
self.num_classes = num_classes
|
515 |
+
self.extra_film_condition_dim = extra_film_condition_dim
|
516 |
+
self.use_checkpoint = use_checkpoint
|
517 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
518 |
+
self.num_heads = num_heads
|
519 |
+
self.num_head_channels = num_head_channels
|
520 |
+
self.num_heads_upsample = num_heads_upsample
|
521 |
+
self.predict_codebook_ids = n_embed is not None
|
522 |
+
self.extra_film_use_concat = extra_film_use_concat
|
523 |
+
time_embed_dim = model_channels * 4
|
524 |
+
self.time_embed = nn.Sequential(
|
525 |
+
linear(model_channels, time_embed_dim),
|
526 |
+
nn.SiLU(),
|
527 |
+
linear(time_embed_dim, time_embed_dim),
|
528 |
+
)
|
529 |
+
|
530 |
+
assert not (
|
531 |
+
self.num_classes is not None and self.extra_film_condition_dim is not None
|
532 |
+
), "As for the condition of theh UNet model, you can only set using class label or an extra embedding vector (such as from CLAP). You cannot set both num_classes and extra_film_condition_dim."
|
533 |
+
|
534 |
+
if self.num_classes is not None:
|
535 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
536 |
+
|
537 |
+
self.use_extra_film_by_concat = (
|
538 |
+
self.extra_film_condition_dim is not None and self.extra_film_use_concat
|
539 |
+
)
|
540 |
+
self.use_extra_film_by_addition = (
|
541 |
+
self.extra_film_condition_dim is not None and not self.extra_film_use_concat
|
542 |
+
)
|
543 |
+
|
544 |
+
if self.extra_film_condition_dim is not None:
|
545 |
+
self.film_emb = nn.Linear(self.extra_film_condition_dim, time_embed_dim)
|
546 |
+
# print("+ Use extra condition on UNet channel using Film. Extra condition dimension is %s. " % self.extra_film_condition_dim)
|
547 |
+
# if(self.use_extra_film_by_concat):
|
548 |
+
# print("\t By concatenation with time embedding")
|
549 |
+
# elif(self.use_extra_film_by_concat):
|
550 |
+
# print("\t By addition with time embedding")
|
551 |
+
|
552 |
+
if use_spatial_transformer and (
|
553 |
+
self.use_extra_film_by_concat or self.use_extra_film_by_addition
|
554 |
+
):
|
555 |
+
# print("+ Spatial transformer will only be used as self-attention. Because you have choose to use film as your global condition.")
|
556 |
+
spatial_transformer_no_context = True
|
557 |
+
else:
|
558 |
+
spatial_transformer_no_context = False
|
559 |
+
|
560 |
+
if use_spatial_transformer and not spatial_transformer_no_context:
|
561 |
+
assert (
|
562 |
+
context_dim is not None
|
563 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
564 |
+
|
565 |
+
if context_dim is not None and not spatial_transformer_no_context:
|
566 |
+
assert (
|
567 |
+
use_spatial_transformer
|
568 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
569 |
+
from omegaconf.listconfig import ListConfig
|
570 |
+
|
571 |
+
if type(context_dim) == ListConfig:
|
572 |
+
context_dim = list(context_dim)
|
573 |
+
|
574 |
+
self.input_blocks = nn.ModuleList(
|
575 |
+
[
|
576 |
+
TimestepEmbedSequential(
|
577 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
578 |
+
)
|
579 |
+
]
|
580 |
+
)
|
581 |
+
self._feature_size = model_channels
|
582 |
+
input_block_chans = [model_channels]
|
583 |
+
ch = model_channels
|
584 |
+
ds = 1
|
585 |
+
for level, mult in enumerate(channel_mult):
|
586 |
+
for _ in range(num_res_blocks):
|
587 |
+
layers = [
|
588 |
+
ResBlock(
|
589 |
+
ch,
|
590 |
+
time_embed_dim
|
591 |
+
if (not self.use_extra_film_by_concat)
|
592 |
+
else time_embed_dim * 2,
|
593 |
+
dropout,
|
594 |
+
out_channels=mult * model_channels,
|
595 |
+
dims=dims,
|
596 |
+
use_checkpoint=use_checkpoint,
|
597 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
598 |
+
)
|
599 |
+
]
|
600 |
+
ch = mult * model_channels
|
601 |
+
if ds in attention_resolutions:
|
602 |
+
if num_head_channels == -1:
|
603 |
+
dim_head = ch // num_heads
|
604 |
+
else:
|
605 |
+
num_heads = ch // num_head_channels
|
606 |
+
dim_head = num_head_channels
|
607 |
+
if legacy:
|
608 |
+
dim_head = (
|
609 |
+
ch // num_heads
|
610 |
+
if use_spatial_transformer
|
611 |
+
else num_head_channels
|
612 |
+
)
|
613 |
+
layers.append(
|
614 |
+
AttentionBlock(
|
615 |
+
ch,
|
616 |
+
use_checkpoint=use_checkpoint,
|
617 |
+
num_heads=num_heads,
|
618 |
+
num_head_channels=dim_head,
|
619 |
+
use_new_attention_order=use_new_attention_order,
|
620 |
+
)
|
621 |
+
if not use_spatial_transformer
|
622 |
+
else SpatialTransformer(
|
623 |
+
ch,
|
624 |
+
num_heads,
|
625 |
+
dim_head,
|
626 |
+
depth=transformer_depth,
|
627 |
+
context_dim=context_dim,
|
628 |
+
no_context=spatial_transformer_no_context,
|
629 |
+
)
|
630 |
+
)
|
631 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
632 |
+
self._feature_size += ch
|
633 |
+
input_block_chans.append(ch)
|
634 |
+
if level != len(channel_mult) - 1:
|
635 |
+
out_ch = ch
|
636 |
+
self.input_blocks.append(
|
637 |
+
TimestepEmbedSequential(
|
638 |
+
ResBlock(
|
639 |
+
ch,
|
640 |
+
time_embed_dim
|
641 |
+
if (not self.use_extra_film_by_concat)
|
642 |
+
else time_embed_dim * 2,
|
643 |
+
dropout,
|
644 |
+
out_channels=out_ch,
|
645 |
+
dims=dims,
|
646 |
+
use_checkpoint=use_checkpoint,
|
647 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
648 |
+
down=True,
|
649 |
+
)
|
650 |
+
if resblock_updown
|
651 |
+
else Downsample(
|
652 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
653 |
+
)
|
654 |
+
)
|
655 |
+
)
|
656 |
+
ch = out_ch
|
657 |
+
input_block_chans.append(ch)
|
658 |
+
ds *= 2
|
659 |
+
self._feature_size += ch
|
660 |
+
|
661 |
+
if num_head_channels == -1:
|
662 |
+
dim_head = ch // num_heads
|
663 |
+
else:
|
664 |
+
num_heads = ch // num_head_channels
|
665 |
+
dim_head = num_head_channels
|
666 |
+
if legacy:
|
667 |
+
# num_heads = 1
|
668 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
669 |
+
self.middle_block = TimestepEmbedSequential(
|
670 |
+
ResBlock(
|
671 |
+
ch,
|
672 |
+
time_embed_dim
|
673 |
+
if (not self.use_extra_film_by_concat)
|
674 |
+
else time_embed_dim * 2,
|
675 |
+
dropout,
|
676 |
+
dims=dims,
|
677 |
+
use_checkpoint=use_checkpoint,
|
678 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
679 |
+
),
|
680 |
+
AttentionBlock(
|
681 |
+
ch,
|
682 |
+
use_checkpoint=use_checkpoint,
|
683 |
+
num_heads=num_heads,
|
684 |
+
num_head_channels=dim_head,
|
685 |
+
use_new_attention_order=use_new_attention_order,
|
686 |
+
)
|
687 |
+
if not use_spatial_transformer
|
688 |
+
else SpatialTransformer(
|
689 |
+
ch,
|
690 |
+
num_heads,
|
691 |
+
dim_head,
|
692 |
+
depth=transformer_depth,
|
693 |
+
context_dim=context_dim,
|
694 |
+
no_context=spatial_transformer_no_context,
|
695 |
+
),
|
696 |
+
ResBlock(
|
697 |
+
ch,
|
698 |
+
time_embed_dim
|
699 |
+
if (not self.use_extra_film_by_concat)
|
700 |
+
else time_embed_dim * 2,
|
701 |
+
dropout,
|
702 |
+
dims=dims,
|
703 |
+
use_checkpoint=use_checkpoint,
|
704 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
705 |
+
),
|
706 |
+
)
|
707 |
+
self._feature_size += ch
|
708 |
+
|
709 |
+
self.output_blocks = nn.ModuleList([])
|
710 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
711 |
+
for i in range(num_res_blocks + 1):
|
712 |
+
ich = input_block_chans.pop()
|
713 |
+
layers = [
|
714 |
+
ResBlock(
|
715 |
+
ch + ich,
|
716 |
+
time_embed_dim
|
717 |
+
if (not self.use_extra_film_by_concat)
|
718 |
+
else time_embed_dim * 2,
|
719 |
+
dropout,
|
720 |
+
out_channels=model_channels * mult,
|
721 |
+
dims=dims,
|
722 |
+
use_checkpoint=use_checkpoint,
|
723 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
724 |
+
)
|
725 |
+
]
|
726 |
+
ch = model_channels * mult
|
727 |
+
if ds in attention_resolutions:
|
728 |
+
if num_head_channels == -1:
|
729 |
+
dim_head = ch // num_heads
|
730 |
+
else:
|
731 |
+
num_heads = ch // num_head_channels
|
732 |
+
dim_head = num_head_channels
|
733 |
+
if legacy:
|
734 |
+
# num_heads = 1
|
735 |
+
dim_head = (
|
736 |
+
ch // num_heads
|
737 |
+
if use_spatial_transformer
|
738 |
+
else num_head_channels
|
739 |
+
)
|
740 |
+
layers.append(
|
741 |
+
AttentionBlock(
|
742 |
+
ch,
|
743 |
+
use_checkpoint=use_checkpoint,
|
744 |
+
num_heads=num_heads_upsample,
|
745 |
+
num_head_channels=dim_head,
|
746 |
+
use_new_attention_order=use_new_attention_order,
|
747 |
+
)
|
748 |
+
if not use_spatial_transformer
|
749 |
+
else SpatialTransformer(
|
750 |
+
ch,
|
751 |
+
num_heads,
|
752 |
+
dim_head,
|
753 |
+
depth=transformer_depth,
|
754 |
+
context_dim=context_dim,
|
755 |
+
no_context=spatial_transformer_no_context,
|
756 |
+
)
|
757 |
+
)
|
758 |
+
if level and i == num_res_blocks:
|
759 |
+
out_ch = ch
|
760 |
+
layers.append(
|
761 |
+
ResBlock(
|
762 |
+
ch,
|
763 |
+
time_embed_dim
|
764 |
+
if (not self.use_extra_film_by_concat)
|
765 |
+
else time_embed_dim * 2,
|
766 |
+
dropout,
|
767 |
+
out_channels=out_ch,
|
768 |
+
dims=dims,
|
769 |
+
use_checkpoint=use_checkpoint,
|
770 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
771 |
+
up=True,
|
772 |
+
)
|
773 |
+
if resblock_updown
|
774 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
775 |
+
)
|
776 |
+
ds //= 2
|
777 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
778 |
+
self._feature_size += ch
|
779 |
+
|
780 |
+
self.out = nn.Sequential(
|
781 |
+
normalization(ch),
|
782 |
+
nn.SiLU(),
|
783 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
784 |
+
)
|
785 |
+
if self.predict_codebook_ids:
|
786 |
+
self.id_predictor = nn.Sequential(
|
787 |
+
normalization(ch),
|
788 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
789 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
790 |
+
)
|
791 |
+
|
792 |
+
self.shape_reported = False
|
793 |
+
|
794 |
+
def convert_to_fp16(self):
|
795 |
+
"""
|
796 |
+
Convert the torso of the model to float16.
|
797 |
+
"""
|
798 |
+
self.input_blocks.apply(convert_module_to_f16)
|
799 |
+
self.middle_block.apply(convert_module_to_f16)
|
800 |
+
self.output_blocks.apply(convert_module_to_f16)
|
801 |
+
|
802 |
+
def convert_to_fp32(self):
|
803 |
+
"""
|
804 |
+
Convert the torso of the model to float32.
|
805 |
+
"""
|
806 |
+
self.input_blocks.apply(convert_module_to_f32)
|
807 |
+
self.middle_block.apply(convert_module_to_f32)
|
808 |
+
self.output_blocks.apply(convert_module_to_f32)
|
809 |
+
|
810 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
811 |
+
"""
|
812 |
+
Apply the model to an input batch.
|
813 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
814 |
+
:param timesteps: a 1-D batch of timesteps.
|
815 |
+
:param context: conditioning plugged in via crossattn
|
816 |
+
:param y: an [N] Tensor of labels, if class-conditional. an [N, extra_film_condition_dim] Tensor if film-embed conditional
|
817 |
+
:return: an [N x C x ...] Tensor of outputs.
|
818 |
+
"""
|
819 |
+
if not self.shape_reported:
|
820 |
+
# print("The shape of UNet input is", x.size())
|
821 |
+
self.shape_reported = True
|
822 |
+
|
823 |
+
assert (y is not None) == (
|
824 |
+
self.num_classes is not None or self.extra_film_condition_dim is not None
|
825 |
+
), "must specify y if and only if the model is class-conditional or film embedding conditional"
|
826 |
+
hs = []
|
827 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
828 |
+
emb = self.time_embed(t_emb)
|
829 |
+
|
830 |
+
if self.num_classes is not None:
|
831 |
+
assert y.shape == (x.shape[0],)
|
832 |
+
emb = emb + self.label_emb(y)
|
833 |
+
|
834 |
+
if self.use_extra_film_by_addition:
|
835 |
+
emb = emb + self.film_emb(y)
|
836 |
+
elif self.use_extra_film_by_concat:
|
837 |
+
emb = th.cat([emb, self.film_emb(y)], dim=-1)
|
838 |
+
|
839 |
+
h = x.type(self.dtype)
|
840 |
+
for module in self.input_blocks:
|
841 |
+
h = module(h, emb, context)
|
842 |
+
hs.append(h)
|
843 |
+
h = self.middle_block(h, emb, context)
|
844 |
+
for module in self.output_blocks:
|
845 |
+
h = th.cat([h, hs.pop()], dim=1)
|
846 |
+
h = module(h, emb, context)
|
847 |
+
h = h.type(x.dtype)
|
848 |
+
if self.predict_codebook_ids:
|
849 |
+
return self.id_predictor(h)
|
850 |
+
else:
|
851 |
+
return self.out(h)
|
852 |
+
|
853 |
+
|
854 |
+
class EncoderUNetModel(nn.Module):
|
855 |
+
"""
|
856 |
+
The half UNet model with attention and timestep embedding.
|
857 |
+
For usage, see UNet.
|
858 |
+
"""
|
859 |
+
|
860 |
+
def __init__(
|
861 |
+
self,
|
862 |
+
image_size,
|
863 |
+
in_channels,
|
864 |
+
model_channels,
|
865 |
+
out_channels,
|
866 |
+
num_res_blocks,
|
867 |
+
attention_resolutions,
|
868 |
+
dropout=0,
|
869 |
+
channel_mult=(1, 2, 4, 8),
|
870 |
+
conv_resample=True,
|
871 |
+
dims=2,
|
872 |
+
use_checkpoint=False,
|
873 |
+
use_fp16=False,
|
874 |
+
num_heads=1,
|
875 |
+
num_head_channels=-1,
|
876 |
+
num_heads_upsample=-1,
|
877 |
+
use_scale_shift_norm=False,
|
878 |
+
resblock_updown=False,
|
879 |
+
use_new_attention_order=False,
|
880 |
+
pool="adaptive",
|
881 |
+
*args,
|
882 |
+
**kwargs,
|
883 |
+
):
|
884 |
+
super().__init__()
|
885 |
+
|
886 |
+
if num_heads_upsample == -1:
|
887 |
+
num_heads_upsample = num_heads
|
888 |
+
|
889 |
+
self.in_channels = in_channels
|
890 |
+
self.model_channels = model_channels
|
891 |
+
self.out_channels = out_channels
|
892 |
+
self.num_res_blocks = num_res_blocks
|
893 |
+
self.attention_resolutions = attention_resolutions
|
894 |
+
self.dropout = dropout
|
895 |
+
self.channel_mult = channel_mult
|
896 |
+
self.conv_resample = conv_resample
|
897 |
+
self.use_checkpoint = use_checkpoint
|
898 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
899 |
+
self.num_heads = num_heads
|
900 |
+
self.num_head_channels = num_head_channels
|
901 |
+
self.num_heads_upsample = num_heads_upsample
|
902 |
+
|
903 |
+
time_embed_dim = model_channels * 4
|
904 |
+
self.time_embed = nn.Sequential(
|
905 |
+
linear(model_channels, time_embed_dim),
|
906 |
+
nn.SiLU(),
|
907 |
+
linear(time_embed_dim, time_embed_dim),
|
908 |
+
)
|
909 |
+
|
910 |
+
self.input_blocks = nn.ModuleList(
|
911 |
+
[
|
912 |
+
TimestepEmbedSequential(
|
913 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
914 |
+
)
|
915 |
+
]
|
916 |
+
)
|
917 |
+
self._feature_size = model_channels
|
918 |
+
input_block_chans = [model_channels]
|
919 |
+
ch = model_channels
|
920 |
+
ds = 1
|
921 |
+
for level, mult in enumerate(channel_mult):
|
922 |
+
for _ in range(num_res_blocks):
|
923 |
+
layers = [
|
924 |
+
ResBlock(
|
925 |
+
ch,
|
926 |
+
time_embed_dim,
|
927 |
+
dropout,
|
928 |
+
out_channels=mult * model_channels,
|
929 |
+
dims=dims,
|
930 |
+
use_checkpoint=use_checkpoint,
|
931 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
932 |
+
)
|
933 |
+
]
|
934 |
+
ch = mult * model_channels
|
935 |
+
if ds in attention_resolutions:
|
936 |
+
layers.append(
|
937 |
+
AttentionBlock(
|
938 |
+
ch,
|
939 |
+
use_checkpoint=use_checkpoint,
|
940 |
+
num_heads=num_heads,
|
941 |
+
num_head_channels=num_head_channels,
|
942 |
+
use_new_attention_order=use_new_attention_order,
|
943 |
+
)
|
944 |
+
)
|
945 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
946 |
+
self._feature_size += ch
|
947 |
+
input_block_chans.append(ch)
|
948 |
+
if level != len(channel_mult) - 1:
|
949 |
+
out_ch = ch
|
950 |
+
self.input_blocks.append(
|
951 |
+
TimestepEmbedSequential(
|
952 |
+
ResBlock(
|
953 |
+
ch,
|
954 |
+
time_embed_dim,
|
955 |
+
dropout,
|
956 |
+
out_channels=out_ch,
|
957 |
+
dims=dims,
|
958 |
+
use_checkpoint=use_checkpoint,
|
959 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
960 |
+
down=True,
|
961 |
+
)
|
962 |
+
if resblock_updown
|
963 |
+
else Downsample(
|
964 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
965 |
+
)
|
966 |
+
)
|
967 |
+
)
|
968 |
+
ch = out_ch
|
969 |
+
input_block_chans.append(ch)
|
970 |
+
ds *= 2
|
971 |
+
self._feature_size += ch
|
972 |
+
|
973 |
+
self.middle_block = TimestepEmbedSequential(
|
974 |
+
ResBlock(
|
975 |
+
ch,
|
976 |
+
time_embed_dim,
|
977 |
+
dropout,
|
978 |
+
dims=dims,
|
979 |
+
use_checkpoint=use_checkpoint,
|
980 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
981 |
+
),
|
982 |
+
AttentionBlock(
|
983 |
+
ch,
|
984 |
+
use_checkpoint=use_checkpoint,
|
985 |
+
num_heads=num_heads,
|
986 |
+
num_head_channels=num_head_channels,
|
987 |
+
use_new_attention_order=use_new_attention_order,
|
988 |
+
),
|
989 |
+
ResBlock(
|
990 |
+
ch,
|
991 |
+
time_embed_dim,
|
992 |
+
dropout,
|
993 |
+
dims=dims,
|
994 |
+
use_checkpoint=use_checkpoint,
|
995 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
996 |
+
),
|
997 |
+
)
|
998 |
+
self._feature_size += ch
|
999 |
+
self.pool = pool
|
1000 |
+
if pool == "adaptive":
|
1001 |
+
self.out = nn.Sequential(
|
1002 |
+
normalization(ch),
|
1003 |
+
nn.SiLU(),
|
1004 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
1005 |
+
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
1006 |
+
nn.Flatten(),
|
1007 |
+
)
|
1008 |
+
elif pool == "attention":
|
1009 |
+
assert num_head_channels != -1
|
1010 |
+
self.out = nn.Sequential(
|
1011 |
+
normalization(ch),
|
1012 |
+
nn.SiLU(),
|
1013 |
+
AttentionPool2d(
|
1014 |
+
(image_size // ds), ch, num_head_channels, out_channels
|
1015 |
+
),
|
1016 |
+
)
|
1017 |
+
elif pool == "spatial":
|
1018 |
+
self.out = nn.Sequential(
|
1019 |
+
nn.Linear(self._feature_size, 2048),
|
1020 |
+
nn.ReLU(),
|
1021 |
+
nn.Linear(2048, self.out_channels),
|
1022 |
+
)
|
1023 |
+
elif pool == "spatial_v2":
|
1024 |
+
self.out = nn.Sequential(
|
1025 |
+
nn.Linear(self._feature_size, 2048),
|
1026 |
+
normalization(2048),
|
1027 |
+
nn.SiLU(),
|
1028 |
+
nn.Linear(2048, self.out_channels),
|
1029 |
+
)
|
1030 |
+
else:
|
1031 |
+
raise NotImplementedError(f"Unexpected {pool} pooling")
|
1032 |
+
|
1033 |
+
def convert_to_fp16(self):
|
1034 |
+
"""
|
1035 |
+
Convert the torso of the model to float16.
|
1036 |
+
"""
|
1037 |
+
self.input_blocks.apply(convert_module_to_f16)
|
1038 |
+
self.middle_block.apply(convert_module_to_f16)
|
1039 |
+
|
1040 |
+
def convert_to_fp32(self):
|
1041 |
+
"""
|
1042 |
+
Convert the torso of the model to float32.
|
1043 |
+
"""
|
1044 |
+
self.input_blocks.apply(convert_module_to_f32)
|
1045 |
+
self.middle_block.apply(convert_module_to_f32)
|
1046 |
+
|
1047 |
+
def forward(self, x, timesteps):
|
1048 |
+
"""
|
1049 |
+
Apply the model to an input batch.
|
1050 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
1051 |
+
:param timesteps: a 1-D batch of timesteps.
|
1052 |
+
:return: an [N x K] Tensor of outputs.
|
1053 |
+
"""
|
1054 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
1055 |
+
|
1056 |
+
results = []
|
1057 |
+
h = x.type(self.dtype)
|
1058 |
+
for module in self.input_blocks:
|
1059 |
+
h = module(h, emb)
|
1060 |
+
if self.pool.startswith("spatial"):
|
1061 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
1062 |
+
h = self.middle_block(h, emb)
|
1063 |
+
if self.pool.startswith("spatial"):
|
1064 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
1065 |
+
h = th.cat(results, axis=-1)
|
1066 |
+
return self.out(h)
|
1067 |
+
else:
|
1068 |
+
h = h.type(x.dtype)
|
1069 |
+
return self.out(h)
|
audioldm/latent_diffusion/util.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
from einops import repeat
|
17 |
+
|
18 |
+
from audioldm.utils import instantiate_from_config
|
19 |
+
|
20 |
+
|
21 |
+
def make_beta_schedule(
|
22 |
+
schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
|
23 |
+
):
|
24 |
+
if schedule == "linear":
|
25 |
+
betas = (
|
26 |
+
torch.linspace(
|
27 |
+
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
|
28 |
+
)
|
29 |
+
** 2
|
30 |
+
)
|
31 |
+
|
32 |
+
elif schedule == "cosine":
|
33 |
+
timesteps = (
|
34 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
35 |
+
)
|
36 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
37 |
+
alphas = torch.cos(alphas).pow(2)
|
38 |
+
alphas = alphas / alphas[0]
|
39 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
40 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
41 |
+
|
42 |
+
elif schedule == "sqrt_linear":
|
43 |
+
betas = torch.linspace(
|
44 |
+
linear_start, linear_end, n_timestep, dtype=torch.float64
|
45 |
+
)
|
46 |
+
elif schedule == "sqrt":
|
47 |
+
betas = (
|
48 |
+
torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
49 |
+
** 0.5
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
53 |
+
return betas.numpy()
|
54 |
+
|
55 |
+
|
56 |
+
def make_ddim_timesteps(
|
57 |
+
ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True
|
58 |
+
):
|
59 |
+
if ddim_discr_method == "uniform":
|
60 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
61 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
62 |
+
elif ddim_discr_method == "quad":
|
63 |
+
ddim_timesteps = (
|
64 |
+
(np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2
|
65 |
+
).astype(int)
|
66 |
+
else:
|
67 |
+
raise NotImplementedError(
|
68 |
+
f'There is no ddim discretization method called "{ddim_discr_method}"'
|
69 |
+
)
|
70 |
+
|
71 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
72 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
73 |
+
steps_out = ddim_timesteps + 1
|
74 |
+
if verbose:
|
75 |
+
print(f"Selected timesteps for ddim sampler: {steps_out}")
|
76 |
+
return steps_out
|
77 |
+
|
78 |
+
|
79 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
80 |
+
# select alphas for computing the variance schedule
|
81 |
+
alphas = alphacums[ddim_timesteps]
|
82 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
83 |
+
|
84 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
85 |
+
sigmas = eta * np.sqrt(
|
86 |
+
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)
|
87 |
+
)
|
88 |
+
if verbose:
|
89 |
+
print(
|
90 |
+
f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}"
|
91 |
+
)
|
92 |
+
print(
|
93 |
+
f"For the chosen value of eta, which is {eta}, "
|
94 |
+
f"this results in the following sigma_t schedule for ddim sampler {sigmas}"
|
95 |
+
)
|
96 |
+
return sigmas, alphas, alphas_prev
|
97 |
+
|
98 |
+
|
99 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
100 |
+
"""
|
101 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
102 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
103 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
104 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
105 |
+
produces the cumulative product of (1-beta) up to that
|
106 |
+
part of the diffusion process.
|
107 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
108 |
+
prevent singularities.
|
109 |
+
"""
|
110 |
+
betas = []
|
111 |
+
for i in range(num_diffusion_timesteps):
|
112 |
+
t1 = i / num_diffusion_timesteps
|
113 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
114 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
115 |
+
return np.array(betas)
|
116 |
+
|
117 |
+
|
118 |
+
def extract_into_tensor(a, t, x_shape):
|
119 |
+
b, *_ = t.shape
|
120 |
+
out = a.gather(-1, t).contiguous()
|
121 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1))).contiguous()
|
122 |
+
|
123 |
+
|
124 |
+
def checkpoint(func, inputs, params, flag):
|
125 |
+
"""
|
126 |
+
Evaluate a function without caching intermediate activations, allowing for
|
127 |
+
reduced memory at the expense of extra compute in the backward pass.
|
128 |
+
:param func: the function to evaluate.
|
129 |
+
:param inputs: the argument sequence to pass to `func`.
|
130 |
+
:param params: a sequence of parameters `func` depends on but does not
|
131 |
+
explicitly take as arguments.
|
132 |
+
:param flag: if False, disable gradient checkpointing.
|
133 |
+
"""
|
134 |
+
if flag:
|
135 |
+
args = tuple(inputs) + tuple(params)
|
136 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
137 |
+
else:
|
138 |
+
return func(*inputs)
|
139 |
+
|
140 |
+
|
141 |
+
class CheckpointFunction(torch.autograd.Function):
|
142 |
+
@staticmethod
|
143 |
+
def forward(ctx, run_function, length, *args):
|
144 |
+
ctx.run_function = run_function
|
145 |
+
ctx.input_tensors = list(args[:length])
|
146 |
+
ctx.input_params = list(args[length:])
|
147 |
+
|
148 |
+
with torch.no_grad():
|
149 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
150 |
+
return output_tensors
|
151 |
+
|
152 |
+
@staticmethod
|
153 |
+
def backward(ctx, *output_grads):
|
154 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
155 |
+
with torch.enable_grad():
|
156 |
+
# Fixes a bug where the first op in run_function modifies the
|
157 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
158 |
+
# Tensors.
|
159 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
160 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
161 |
+
input_grads = torch.autograd.grad(
|
162 |
+
output_tensors,
|
163 |
+
ctx.input_tensors + ctx.input_params,
|
164 |
+
output_grads,
|
165 |
+
allow_unused=True,
|
166 |
+
)
|
167 |
+
del ctx.input_tensors
|
168 |
+
del ctx.input_params
|
169 |
+
del output_tensors
|
170 |
+
return (None, None) + input_grads
|
171 |
+
|
172 |
+
|
173 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
174 |
+
"""
|
175 |
+
Create sinusoidal timestep embeddings.
|
176 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
177 |
+
These may be fractional.
|
178 |
+
:param dim: the dimension of the output.
|
179 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
180 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
181 |
+
"""
|
182 |
+
if not repeat_only:
|
183 |
+
half = dim // 2
|
184 |
+
freqs = torch.exp(
|
185 |
+
-math.log(max_period)
|
186 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
187 |
+
/ half
|
188 |
+
).to(device=timesteps.device)
|
189 |
+
args = timesteps[:, None].float() * freqs[None]
|
190 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
191 |
+
if dim % 2:
|
192 |
+
embedding = torch.cat(
|
193 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
embedding = repeat(timesteps, "b -> b d", d=dim)
|
197 |
+
return embedding
|
198 |
+
|
199 |
+
|
200 |
+
def zero_module(module):
|
201 |
+
"""
|
202 |
+
Zero out the parameters of a module and return it.
|
203 |
+
"""
|
204 |
+
for p in module.parameters():
|
205 |
+
p.detach().zero_()
|
206 |
+
return module
|
207 |
+
|
208 |
+
|
209 |
+
def scale_module(module, scale):
|
210 |
+
"""
|
211 |
+
Scale the parameters of a module and return it.
|
212 |
+
"""
|
213 |
+
for p in module.parameters():
|
214 |
+
p.detach().mul_(scale)
|
215 |
+
return module
|
216 |
+
|
217 |
+
|
218 |
+
def mean_flat(tensor):
|
219 |
+
"""
|
220 |
+
Take the mean over all non-batch dimensions.
|
221 |
+
"""
|
222 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
223 |
+
|
224 |
+
|
225 |
+
def normalization(channels):
|
226 |
+
"""
|
227 |
+
Make a standard normalization layer.
|
228 |
+
:param channels: number of input channels.
|
229 |
+
:return: an nn.Module for normalization.
|
230 |
+
"""
|
231 |
+
return GroupNorm32(32, channels)
|
232 |
+
|
233 |
+
|
234 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
235 |
+
class SiLU(nn.Module):
|
236 |
+
def forward(self, x):
|
237 |
+
return x * torch.sigmoid(x)
|
238 |
+
|
239 |
+
|
240 |
+
class GroupNorm32(nn.GroupNorm):
|
241 |
+
def forward(self, x):
|
242 |
+
return super().forward(x.float()).type(x.dtype)
|
243 |
+
|
244 |
+
|
245 |
+
def conv_nd(dims, *args, **kwargs):
|
246 |
+
"""
|
247 |
+
Create a 1D, 2D, or 3D convolution module.
|
248 |
+
"""
|
249 |
+
if dims == 1:
|
250 |
+
return nn.Conv1d(*args, **kwargs)
|
251 |
+
elif dims == 2:
|
252 |
+
return nn.Conv2d(*args, **kwargs)
|
253 |
+
elif dims == 3:
|
254 |
+
return nn.Conv3d(*args, **kwargs)
|
255 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
256 |
+
|
257 |
+
|
258 |
+
def linear(*args, **kwargs):
|
259 |
+
"""
|
260 |
+
Create a linear module.
|
261 |
+
"""
|
262 |
+
return nn.Linear(*args, **kwargs)
|
263 |
+
|
264 |
+
|
265 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
266 |
+
"""
|
267 |
+
Create a 1D, 2D, or 3D average pooling module.
|
268 |
+
"""
|
269 |
+
if dims == 1:
|
270 |
+
return nn.AvgPool1d(*args, **kwargs)
|
271 |
+
elif dims == 2:
|
272 |
+
return nn.AvgPool2d(*args, **kwargs)
|
273 |
+
elif dims == 3:
|
274 |
+
return nn.AvgPool3d(*args, **kwargs)
|
275 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
276 |
+
|
277 |
+
|
278 |
+
class HybridConditioner(nn.Module):
|
279 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
280 |
+
super().__init__()
|
281 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
282 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
283 |
+
|
284 |
+
def forward(self, c_concat, c_crossattn):
|
285 |
+
c_concat = self.concat_conditioner(c_concat)
|
286 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
287 |
+
return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}
|
288 |
+
|
289 |
+
|
290 |
+
def noise_like(shape, device, repeat=False):
|
291 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
292 |
+
shape[0], *((1,) * (len(shape) - 1))
|
293 |
+
)
|
294 |
+
noise = lambda: torch.randn(shape, device=device)
|
295 |
+
return repeat_noise() if repeat else noise()
|
audioldm/ldm.py
ADDED
@@ -0,0 +1,818 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from audioldm.utils import default, instantiate_from_config, save_wave
|
7 |
+
from audioldm.latent_diffusion.ddpm import DDPM
|
8 |
+
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution
|
9 |
+
from audioldm.latent_diffusion.util import noise_like
|
10 |
+
from audioldm.latent_diffusion.ddim import DDIMSampler
|
11 |
+
import os
|
12 |
+
|
13 |
+
|
14 |
+
def disabled_train(self, mode=True):
|
15 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
16 |
+
does not change anymore."""
|
17 |
+
return self
|
18 |
+
|
19 |
+
|
20 |
+
class LatentDiffusion(DDPM):
|
21 |
+
"""main class"""
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
device="cuda",
|
26 |
+
first_stage_config=None,
|
27 |
+
cond_stage_config=None,
|
28 |
+
num_timesteps_cond=None,
|
29 |
+
cond_stage_key="image",
|
30 |
+
cond_stage_trainable=False,
|
31 |
+
concat_mode=True,
|
32 |
+
cond_stage_forward=None,
|
33 |
+
conditioning_key=None,
|
34 |
+
scale_factor=1.0,
|
35 |
+
scale_by_std=False,
|
36 |
+
base_learning_rate=None,
|
37 |
+
*args,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
self.device = device
|
41 |
+
self.learning_rate = base_learning_rate
|
42 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
43 |
+
self.scale_by_std = scale_by_std
|
44 |
+
assert self.num_timesteps_cond <= kwargs["timesteps"]
|
45 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
46 |
+
if conditioning_key is None:
|
47 |
+
conditioning_key = "concat" if concat_mode else "crossattn"
|
48 |
+
if cond_stage_config == "__is_unconditional__":
|
49 |
+
conditioning_key = None
|
50 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
51 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
52 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
53 |
+
self.concat_mode = concat_mode
|
54 |
+
self.cond_stage_trainable = cond_stage_trainable
|
55 |
+
self.cond_stage_key = cond_stage_key
|
56 |
+
self.cond_stage_key_orig = cond_stage_key
|
57 |
+
try:
|
58 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
59 |
+
except:
|
60 |
+
self.num_downs = 0
|
61 |
+
if not scale_by_std:
|
62 |
+
self.scale_factor = scale_factor
|
63 |
+
else:
|
64 |
+
self.register_buffer("scale_factor", torch.tensor(scale_factor))
|
65 |
+
self.instantiate_first_stage(first_stage_config)
|
66 |
+
self.instantiate_cond_stage(cond_stage_config)
|
67 |
+
self.cond_stage_forward = cond_stage_forward
|
68 |
+
self.clip_denoised = False
|
69 |
+
|
70 |
+
def make_cond_schedule(
|
71 |
+
self,
|
72 |
+
):
|
73 |
+
self.cond_ids = torch.full(
|
74 |
+
size=(self.num_timesteps,),
|
75 |
+
fill_value=self.num_timesteps - 1,
|
76 |
+
dtype=torch.long,
|
77 |
+
)
|
78 |
+
ids = torch.round(
|
79 |
+
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
|
80 |
+
).long()
|
81 |
+
self.cond_ids[: self.num_timesteps_cond] = ids
|
82 |
+
|
83 |
+
def register_schedule(
|
84 |
+
self,
|
85 |
+
given_betas=None,
|
86 |
+
beta_schedule="linear",
|
87 |
+
timesteps=1000,
|
88 |
+
linear_start=1e-4,
|
89 |
+
linear_end=2e-2,
|
90 |
+
cosine_s=8e-3,
|
91 |
+
):
|
92 |
+
super().register_schedule(
|
93 |
+
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
|
94 |
+
)
|
95 |
+
|
96 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
97 |
+
if self.shorten_cond_schedule:
|
98 |
+
self.make_cond_schedule()
|
99 |
+
|
100 |
+
def instantiate_first_stage(self, config):
|
101 |
+
model = instantiate_from_config(config)
|
102 |
+
self.first_stage_model = model.eval()
|
103 |
+
self.first_stage_model.train = disabled_train
|
104 |
+
for param in self.first_stage_model.parameters():
|
105 |
+
param.requires_grad = False
|
106 |
+
|
107 |
+
def instantiate_cond_stage(self, config):
|
108 |
+
if not self.cond_stage_trainable:
|
109 |
+
if config == "__is_first_stage__":
|
110 |
+
print("Using first stage also as cond stage.")
|
111 |
+
self.cond_stage_model = self.first_stage_model
|
112 |
+
elif config == "__is_unconditional__":
|
113 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
114 |
+
self.cond_stage_model = None
|
115 |
+
# self.be_unconditional = True
|
116 |
+
else:
|
117 |
+
model = instantiate_from_config(config)
|
118 |
+
self.cond_stage_model = model.eval()
|
119 |
+
self.cond_stage_model.train = disabled_train
|
120 |
+
for param in self.cond_stage_model.parameters():
|
121 |
+
param.requires_grad = False
|
122 |
+
else:
|
123 |
+
assert config != "__is_first_stage__"
|
124 |
+
assert config != "__is_unconditional__"
|
125 |
+
model = instantiate_from_config(config)
|
126 |
+
self.cond_stage_model = model
|
127 |
+
self.cond_stage_model = self.cond_stage_model.to(self.device)
|
128 |
+
|
129 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
130 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
131 |
+
z = encoder_posterior.sample()
|
132 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
133 |
+
z = encoder_posterior
|
134 |
+
else:
|
135 |
+
raise NotImplementedError(
|
136 |
+
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
|
137 |
+
)
|
138 |
+
return self.scale_factor * z
|
139 |
+
|
140 |
+
def get_learned_conditioning(self, c):
|
141 |
+
if self.cond_stage_forward is None:
|
142 |
+
if hasattr(self.cond_stage_model, "encode") and callable(
|
143 |
+
self.cond_stage_model.encode
|
144 |
+
):
|
145 |
+
c = self.cond_stage_model.encode(c)
|
146 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
147 |
+
c = c.mode()
|
148 |
+
else:
|
149 |
+
# Text input is list
|
150 |
+
if type(c) == list and len(c) == 1:
|
151 |
+
c = self.cond_stage_model([c[0], c[0]])
|
152 |
+
c = c[0:1]
|
153 |
+
else:
|
154 |
+
c = self.cond_stage_model(c)
|
155 |
+
else:
|
156 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
157 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
158 |
+
return c
|
159 |
+
|
160 |
+
@torch.no_grad()
|
161 |
+
def get_input(
|
162 |
+
self,
|
163 |
+
batch,
|
164 |
+
k,
|
165 |
+
return_first_stage_encode=True,
|
166 |
+
return_first_stage_outputs=False,
|
167 |
+
force_c_encode=False,
|
168 |
+
cond_key=None,
|
169 |
+
return_original_cond=False,
|
170 |
+
bs=None,
|
171 |
+
):
|
172 |
+
x = super().get_input(batch, k)
|
173 |
+
|
174 |
+
if bs is not None:
|
175 |
+
x = x[:bs]
|
176 |
+
|
177 |
+
x = x.to(self.device)
|
178 |
+
|
179 |
+
if return_first_stage_encode:
|
180 |
+
encoder_posterior = self.encode_first_stage(x)
|
181 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
182 |
+
else:
|
183 |
+
z = None
|
184 |
+
|
185 |
+
if self.model.conditioning_key is not None:
|
186 |
+
if cond_key is None:
|
187 |
+
cond_key = self.cond_stage_key
|
188 |
+
if cond_key != self.first_stage_key:
|
189 |
+
if cond_key in ["caption", "coordinates_bbox"]:
|
190 |
+
xc = batch[cond_key]
|
191 |
+
elif cond_key == "class_label":
|
192 |
+
xc = batch
|
193 |
+
else:
|
194 |
+
# [bs, 1, 527]
|
195 |
+
xc = super().get_input(batch, cond_key)
|
196 |
+
if type(xc) == torch.Tensor:
|
197 |
+
xc = xc.to(self.device)
|
198 |
+
else:
|
199 |
+
xc = x
|
200 |
+
if not self.cond_stage_trainable or force_c_encode:
|
201 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
202 |
+
c = self.get_learned_conditioning(xc)
|
203 |
+
else:
|
204 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
205 |
+
else:
|
206 |
+
c = xc
|
207 |
+
|
208 |
+
if bs is not None:
|
209 |
+
c = c[:bs]
|
210 |
+
|
211 |
+
else:
|
212 |
+
c = None
|
213 |
+
xc = None
|
214 |
+
if self.use_positional_encodings:
|
215 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
216 |
+
c = {"pos_x": pos_x, "pos_y": pos_y}
|
217 |
+
out = [z, c]
|
218 |
+
if return_first_stage_outputs:
|
219 |
+
xrec = self.decode_first_stage(z)
|
220 |
+
out.extend([x, xrec])
|
221 |
+
if return_original_cond:
|
222 |
+
out.append(xc)
|
223 |
+
return out
|
224 |
+
|
225 |
+
@torch.no_grad()
|
226 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
227 |
+
if predict_cids:
|
228 |
+
if z.dim() == 4:
|
229 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
230 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
231 |
+
z = rearrange(z, "b h w c -> b c h w").contiguous()
|
232 |
+
|
233 |
+
z = 1.0 / self.scale_factor * z
|
234 |
+
return self.first_stage_model.decode(z)
|
235 |
+
|
236 |
+
def mel_spectrogram_to_waveform(self, mel):
|
237 |
+
# Mel: [bs, 1, t-steps, fbins]
|
238 |
+
if len(mel.size()) == 4:
|
239 |
+
mel = mel.squeeze(1)
|
240 |
+
mel = mel.permute(0, 2, 1)
|
241 |
+
waveform = self.first_stage_model.vocoder(mel)
|
242 |
+
waveform = waveform.cpu().detach().numpy()
|
243 |
+
return waveform
|
244 |
+
|
245 |
+
@torch.no_grad()
|
246 |
+
def encode_first_stage(self, x):
|
247 |
+
return self.first_stage_model.encode(x)
|
248 |
+
|
249 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
250 |
+
|
251 |
+
if isinstance(cond, dict):
|
252 |
+
# hybrid case, cond is exptected to be a dict
|
253 |
+
pass
|
254 |
+
else:
|
255 |
+
if not isinstance(cond, list):
|
256 |
+
cond = [cond]
|
257 |
+
if self.model.conditioning_key == "concat":
|
258 |
+
key = "c_concat"
|
259 |
+
elif self.model.conditioning_key == "crossattn":
|
260 |
+
key = "c_crossattn"
|
261 |
+
else:
|
262 |
+
key = "c_film"
|
263 |
+
|
264 |
+
cond = {key: cond}
|
265 |
+
|
266 |
+
x_recon = self.model(x_noisy, t, **cond)
|
267 |
+
|
268 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
269 |
+
return x_recon[0]
|
270 |
+
else:
|
271 |
+
return x_recon
|
272 |
+
|
273 |
+
def p_mean_variance(
|
274 |
+
self,
|
275 |
+
x,
|
276 |
+
c,
|
277 |
+
t,
|
278 |
+
clip_denoised: bool,
|
279 |
+
return_codebook_ids=False,
|
280 |
+
quantize_denoised=False,
|
281 |
+
return_x0=False,
|
282 |
+
score_corrector=None,
|
283 |
+
corrector_kwargs=None,
|
284 |
+
):
|
285 |
+
t_in = t
|
286 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
287 |
+
|
288 |
+
if score_corrector is not None:
|
289 |
+
assert self.parameterization == "eps"
|
290 |
+
model_out = score_corrector.modify_score(
|
291 |
+
self, model_out, x, t, c, **corrector_kwargs
|
292 |
+
)
|
293 |
+
|
294 |
+
if return_codebook_ids:
|
295 |
+
model_out, logits = model_out
|
296 |
+
|
297 |
+
if self.parameterization == "eps":
|
298 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
299 |
+
elif self.parameterization == "x0":
|
300 |
+
x_recon = model_out
|
301 |
+
else:
|
302 |
+
raise NotImplementedError()
|
303 |
+
|
304 |
+
if clip_denoised:
|
305 |
+
x_recon.clamp_(-1.0, 1.0)
|
306 |
+
if quantize_denoised:
|
307 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
308 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
|
309 |
+
x_start=x_recon, x_t=x, t=t
|
310 |
+
)
|
311 |
+
if return_codebook_ids:
|
312 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
313 |
+
elif return_x0:
|
314 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
315 |
+
else:
|
316 |
+
return model_mean, posterior_variance, posterior_log_variance
|
317 |
+
|
318 |
+
@torch.no_grad()
|
319 |
+
def p_sample(
|
320 |
+
self,
|
321 |
+
x,
|
322 |
+
c,
|
323 |
+
t,
|
324 |
+
clip_denoised=False,
|
325 |
+
repeat_noise=False,
|
326 |
+
return_codebook_ids=False,
|
327 |
+
quantize_denoised=False,
|
328 |
+
return_x0=False,
|
329 |
+
temperature=1.0,
|
330 |
+
noise_dropout=0.0,
|
331 |
+
score_corrector=None,
|
332 |
+
corrector_kwargs=None,
|
333 |
+
):
|
334 |
+
b, *_, device = *x.shape, x.device
|
335 |
+
outputs = self.p_mean_variance(
|
336 |
+
x=x,
|
337 |
+
c=c,
|
338 |
+
t=t,
|
339 |
+
clip_denoised=clip_denoised,
|
340 |
+
return_codebook_ids=return_codebook_ids,
|
341 |
+
quantize_denoised=quantize_denoised,
|
342 |
+
return_x0=return_x0,
|
343 |
+
score_corrector=score_corrector,
|
344 |
+
corrector_kwargs=corrector_kwargs,
|
345 |
+
)
|
346 |
+
if return_codebook_ids:
|
347 |
+
raise DeprecationWarning("Support dropped.")
|
348 |
+
model_mean, _, model_log_variance, logits = outputs
|
349 |
+
elif return_x0:
|
350 |
+
model_mean, _, model_log_variance, x0 = outputs
|
351 |
+
else:
|
352 |
+
model_mean, _, model_log_variance = outputs
|
353 |
+
|
354 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
355 |
+
if noise_dropout > 0.0:
|
356 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
357 |
+
# no noise when t == 0
|
358 |
+
nonzero_mask = (
|
359 |
+
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
|
360 |
+
)
|
361 |
+
|
362 |
+
if return_codebook_ids:
|
363 |
+
return model_mean + nonzero_mask * (
|
364 |
+
0.5 * model_log_variance
|
365 |
+
).exp() * noise, logits.argmax(dim=1)
|
366 |
+
if return_x0:
|
367 |
+
return (
|
368 |
+
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
|
369 |
+
x0,
|
370 |
+
)
|
371 |
+
else:
|
372 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
373 |
+
|
374 |
+
@torch.no_grad()
|
375 |
+
def progressive_denoising(
|
376 |
+
self,
|
377 |
+
cond,
|
378 |
+
shape,
|
379 |
+
verbose=True,
|
380 |
+
callback=None,
|
381 |
+
quantize_denoised=False,
|
382 |
+
img_callback=None,
|
383 |
+
mask=None,
|
384 |
+
x0=None,
|
385 |
+
temperature=1.0,
|
386 |
+
noise_dropout=0.0,
|
387 |
+
score_corrector=None,
|
388 |
+
corrector_kwargs=None,
|
389 |
+
batch_size=None,
|
390 |
+
x_T=None,
|
391 |
+
start_T=None,
|
392 |
+
log_every_t=None,
|
393 |
+
):
|
394 |
+
if not log_every_t:
|
395 |
+
log_every_t = self.log_every_t
|
396 |
+
timesteps = self.num_timesteps
|
397 |
+
if batch_size is not None:
|
398 |
+
b = batch_size if batch_size is not None else shape[0]
|
399 |
+
shape = [batch_size] + list(shape)
|
400 |
+
else:
|
401 |
+
b = batch_size = shape[0]
|
402 |
+
if x_T is None:
|
403 |
+
img = torch.randn(shape, device=self.device)
|
404 |
+
else:
|
405 |
+
img = x_T
|
406 |
+
intermediates = []
|
407 |
+
if cond is not None:
|
408 |
+
if isinstance(cond, dict):
|
409 |
+
cond = {
|
410 |
+
key: cond[key][:batch_size]
|
411 |
+
if not isinstance(cond[key], list)
|
412 |
+
else list(map(lambda x: x[:batch_size], cond[key]))
|
413 |
+
for key in cond
|
414 |
+
}
|
415 |
+
else:
|
416 |
+
cond = (
|
417 |
+
[c[:batch_size] for c in cond]
|
418 |
+
if isinstance(cond, list)
|
419 |
+
else cond[:batch_size]
|
420 |
+
)
|
421 |
+
|
422 |
+
if start_T is not None:
|
423 |
+
timesteps = min(timesteps, start_T)
|
424 |
+
iterator = (
|
425 |
+
tqdm(
|
426 |
+
reversed(range(0, timesteps)),
|
427 |
+
desc="Progressive Generation",
|
428 |
+
total=timesteps,
|
429 |
+
)
|
430 |
+
if verbose
|
431 |
+
else reversed(range(0, timesteps))
|
432 |
+
)
|
433 |
+
if type(temperature) == float:
|
434 |
+
temperature = [temperature] * timesteps
|
435 |
+
|
436 |
+
for i in iterator:
|
437 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
438 |
+
if self.shorten_cond_schedule:
|
439 |
+
assert self.model.conditioning_key != "hybrid"
|
440 |
+
tc = self.cond_ids[ts].to(cond.device)
|
441 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
442 |
+
|
443 |
+
img, x0_partial = self.p_sample(
|
444 |
+
img,
|
445 |
+
cond,
|
446 |
+
ts,
|
447 |
+
clip_denoised=self.clip_denoised,
|
448 |
+
quantize_denoised=quantize_denoised,
|
449 |
+
return_x0=True,
|
450 |
+
temperature=temperature[i],
|
451 |
+
noise_dropout=noise_dropout,
|
452 |
+
score_corrector=score_corrector,
|
453 |
+
corrector_kwargs=corrector_kwargs,
|
454 |
+
)
|
455 |
+
if mask is not None:
|
456 |
+
assert x0 is not None
|
457 |
+
img_orig = self.q_sample(x0, ts)
|
458 |
+
img = img_orig * mask + (1.0 - mask) * img
|
459 |
+
|
460 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
461 |
+
intermediates.append(x0_partial)
|
462 |
+
if callback:
|
463 |
+
callback(i)
|
464 |
+
if img_callback:
|
465 |
+
img_callback(img, i)
|
466 |
+
return img, intermediates
|
467 |
+
|
468 |
+
@torch.no_grad()
|
469 |
+
def p_sample_loop(
|
470 |
+
self,
|
471 |
+
cond,
|
472 |
+
shape,
|
473 |
+
return_intermediates=False,
|
474 |
+
x_T=None,
|
475 |
+
verbose=True,
|
476 |
+
callback=None,
|
477 |
+
timesteps=None,
|
478 |
+
quantize_denoised=False,
|
479 |
+
mask=None,
|
480 |
+
x0=None,
|
481 |
+
img_callback=None,
|
482 |
+
start_T=None,
|
483 |
+
log_every_t=None,
|
484 |
+
):
|
485 |
+
|
486 |
+
if not log_every_t:
|
487 |
+
log_every_t = self.log_every_t
|
488 |
+
device = self.betas.device
|
489 |
+
b = shape[0]
|
490 |
+
if x_T is None:
|
491 |
+
img = torch.randn(shape, device=device)
|
492 |
+
else:
|
493 |
+
img = x_T
|
494 |
+
|
495 |
+
intermediates = [img]
|
496 |
+
if timesteps is None:
|
497 |
+
timesteps = self.num_timesteps
|
498 |
+
|
499 |
+
if start_T is not None:
|
500 |
+
timesteps = min(timesteps, start_T)
|
501 |
+
iterator = (
|
502 |
+
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps)
|
503 |
+
if verbose
|
504 |
+
else reversed(range(0, timesteps))
|
505 |
+
)
|
506 |
+
|
507 |
+
if mask is not None:
|
508 |
+
assert x0 is not None
|
509 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
510 |
+
|
511 |
+
for i in iterator:
|
512 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
513 |
+
if self.shorten_cond_schedule:
|
514 |
+
assert self.model.conditioning_key != "hybrid"
|
515 |
+
tc = self.cond_ids[ts].to(cond.device)
|
516 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
517 |
+
|
518 |
+
img = self.p_sample(
|
519 |
+
img,
|
520 |
+
cond,
|
521 |
+
ts,
|
522 |
+
clip_denoised=self.clip_denoised,
|
523 |
+
quantize_denoised=quantize_denoised,
|
524 |
+
)
|
525 |
+
if mask is not None:
|
526 |
+
img_orig = self.q_sample(x0, ts)
|
527 |
+
img = img_orig * mask + (1.0 - mask) * img
|
528 |
+
|
529 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
530 |
+
intermediates.append(img)
|
531 |
+
if callback:
|
532 |
+
callback(i)
|
533 |
+
if img_callback:
|
534 |
+
img_callback(img, i)
|
535 |
+
|
536 |
+
if return_intermediates:
|
537 |
+
return img, intermediates
|
538 |
+
return img
|
539 |
+
|
540 |
+
@torch.no_grad()
|
541 |
+
def sample(
|
542 |
+
self,
|
543 |
+
cond,
|
544 |
+
batch_size=16,
|
545 |
+
return_intermediates=False,
|
546 |
+
x_T=None,
|
547 |
+
verbose=True,
|
548 |
+
timesteps=None,
|
549 |
+
quantize_denoised=False,
|
550 |
+
mask=None,
|
551 |
+
x0=None,
|
552 |
+
shape=None,
|
553 |
+
**kwargs,
|
554 |
+
):
|
555 |
+
if shape is None:
|
556 |
+
shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size)
|
557 |
+
if cond is not None:
|
558 |
+
if isinstance(cond, dict):
|
559 |
+
cond = {
|
560 |
+
key: cond[key][:batch_size]
|
561 |
+
if not isinstance(cond[key], list)
|
562 |
+
else list(map(lambda x: x[:batch_size], cond[key]))
|
563 |
+
for key in cond
|
564 |
+
}
|
565 |
+
else:
|
566 |
+
cond = (
|
567 |
+
[c[:batch_size] for c in cond]
|
568 |
+
if isinstance(cond, list)
|
569 |
+
else cond[:batch_size]
|
570 |
+
)
|
571 |
+
return self.p_sample_loop(
|
572 |
+
cond,
|
573 |
+
shape,
|
574 |
+
return_intermediates=return_intermediates,
|
575 |
+
x_T=x_T,
|
576 |
+
verbose=verbose,
|
577 |
+
timesteps=timesteps,
|
578 |
+
quantize_denoised=quantize_denoised,
|
579 |
+
mask=mask,
|
580 |
+
x0=x0,
|
581 |
+
**kwargs,
|
582 |
+
)
|
583 |
+
|
584 |
+
@torch.no_grad()
|
585 |
+
def sample_log(
|
586 |
+
self,
|
587 |
+
cond,
|
588 |
+
batch_size,
|
589 |
+
ddim,
|
590 |
+
ddim_steps,
|
591 |
+
unconditional_guidance_scale=1.0,
|
592 |
+
unconditional_conditioning=None,
|
593 |
+
use_plms=False,
|
594 |
+
mask=None,
|
595 |
+
**kwargs,
|
596 |
+
):
|
597 |
+
|
598 |
+
if mask is not None:
|
599 |
+
shape = (self.channels, mask.size()[-2], mask.size()[-1])
|
600 |
+
else:
|
601 |
+
shape = (self.channels, self.latent_t_size, self.latent_f_size)
|
602 |
+
|
603 |
+
intermediate = None
|
604 |
+
if ddim and not use_plms:
|
605 |
+
# print("Use ddim sampler")
|
606 |
+
|
607 |
+
ddim_sampler = DDIMSampler(self)
|
608 |
+
samples, intermediates = ddim_sampler.sample(
|
609 |
+
ddim_steps,
|
610 |
+
batch_size,
|
611 |
+
shape,
|
612 |
+
cond,
|
613 |
+
verbose=False,
|
614 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
615 |
+
unconditional_conditioning=unconditional_conditioning,
|
616 |
+
mask=mask,
|
617 |
+
**kwargs,
|
618 |
+
)
|
619 |
+
|
620 |
+
else:
|
621 |
+
# print("Use DDPM sampler")
|
622 |
+
samples, intermediates = self.sample(
|
623 |
+
cond=cond,
|
624 |
+
batch_size=batch_size,
|
625 |
+
return_intermediates=True,
|
626 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
627 |
+
mask=mask,
|
628 |
+
unconditional_conditioning=unconditional_conditioning,
|
629 |
+
**kwargs,
|
630 |
+
)
|
631 |
+
|
632 |
+
return samples, intermediate
|
633 |
+
|
634 |
+
@torch.no_grad()
|
635 |
+
def generate_sample(
|
636 |
+
self,
|
637 |
+
batchs,
|
638 |
+
ddim_steps=200,
|
639 |
+
ddim_eta=1.0,
|
640 |
+
x_T=None,
|
641 |
+
n_candidate_gen_per_text=1,
|
642 |
+
unconditional_guidance_scale=1.0,
|
643 |
+
unconditional_conditioning=None,
|
644 |
+
name="waveform",
|
645 |
+
use_plms=False,
|
646 |
+
save=False,
|
647 |
+
**kwargs,
|
648 |
+
):
|
649 |
+
# Generate n_candidate_gen_per_text times and select the best
|
650 |
+
# Batch: audio, text, fnames
|
651 |
+
assert x_T is None
|
652 |
+
try:
|
653 |
+
batchs = iter(batchs)
|
654 |
+
except TypeError:
|
655 |
+
raise ValueError("The first input argument should be an iterable object")
|
656 |
+
|
657 |
+
if use_plms:
|
658 |
+
assert ddim_steps is not None
|
659 |
+
use_ddim = ddim_steps is not None
|
660 |
+
# waveform_save_path = os.path.join(self.get_log_dir(), name)
|
661 |
+
# os.makedirs(waveform_save_path, exist_ok=True)
|
662 |
+
# print("Waveform save path: ", waveform_save_path)
|
663 |
+
|
664 |
+
with self.ema_scope("Generate"):
|
665 |
+
for batch in batchs:
|
666 |
+
z, c = self.get_input(
|
667 |
+
batch,
|
668 |
+
self.first_stage_key,
|
669 |
+
cond_key=self.cond_stage_key,
|
670 |
+
return_first_stage_outputs=False,
|
671 |
+
force_c_encode=True,
|
672 |
+
return_original_cond=False,
|
673 |
+
bs=None,
|
674 |
+
)
|
675 |
+
text = super().get_input(batch, "text")
|
676 |
+
|
677 |
+
# Generate multiple samples
|
678 |
+
batch_size = z.shape[0] * n_candidate_gen_per_text
|
679 |
+
c = torch.cat([c] * n_candidate_gen_per_text, dim=0)
|
680 |
+
text = text * n_candidate_gen_per_text
|
681 |
+
|
682 |
+
if unconditional_guidance_scale != 1.0:
|
683 |
+
unconditional_conditioning = (
|
684 |
+
self.cond_stage_model.get_unconditional_condition(batch_size)
|
685 |
+
)
|
686 |
+
|
687 |
+
samples, _ = self.sample_log(
|
688 |
+
cond=c,
|
689 |
+
batch_size=batch_size,
|
690 |
+
x_T=x_T,
|
691 |
+
ddim=use_ddim,
|
692 |
+
ddim_steps=ddim_steps,
|
693 |
+
eta=ddim_eta,
|
694 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
695 |
+
unconditional_conditioning=unconditional_conditioning,
|
696 |
+
use_plms=use_plms,
|
697 |
+
)
|
698 |
+
|
699 |
+
if(torch.max(torch.abs(samples)) > 1e2):
|
700 |
+
samples = torch.clip(samples, min=-10, max=10)
|
701 |
+
|
702 |
+
mel = self.decode_first_stage(samples)
|
703 |
+
|
704 |
+
waveform = self.mel_spectrogram_to_waveform(mel)
|
705 |
+
|
706 |
+
if waveform.shape[0] > 1:
|
707 |
+
similarity = self.cond_stage_model.cos_similarity(
|
708 |
+
torch.FloatTensor(waveform).squeeze(1), text
|
709 |
+
)
|
710 |
+
|
711 |
+
best_index = []
|
712 |
+
for i in range(z.shape[0]):
|
713 |
+
candidates = similarity[i :: z.shape[0]]
|
714 |
+
max_index = torch.argmax(candidates).item()
|
715 |
+
best_index.append(i + max_index * z.shape[0])
|
716 |
+
|
717 |
+
waveform = waveform[best_index]
|
718 |
+
# print("Similarity between generated audio and text", similarity)
|
719 |
+
# print("Choose the following indexes:", best_index)
|
720 |
+
|
721 |
+
return waveform
|
722 |
+
|
723 |
+
@torch.no_grad()
|
724 |
+
def generate_sample_masked(
|
725 |
+
self,
|
726 |
+
batchs,
|
727 |
+
ddim_steps=200,
|
728 |
+
ddim_eta=1.0,
|
729 |
+
x_T=None,
|
730 |
+
n_candidate_gen_per_text=1,
|
731 |
+
unconditional_guidance_scale=1.0,
|
732 |
+
unconditional_conditioning=None,
|
733 |
+
name="waveform",
|
734 |
+
use_plms=False,
|
735 |
+
time_mask_ratio_start_and_end=(0.25, 0.75),
|
736 |
+
freq_mask_ratio_start_and_end=(0.75, 1.0),
|
737 |
+
save=False,
|
738 |
+
**kwargs,
|
739 |
+
):
|
740 |
+
# Generate n_candidate_gen_per_text times and select the best
|
741 |
+
# Batch: audio, text, fnames
|
742 |
+
assert x_T is None
|
743 |
+
try:
|
744 |
+
batchs = iter(batchs)
|
745 |
+
except TypeError:
|
746 |
+
raise ValueError("The first input argument should be an iterable object")
|
747 |
+
|
748 |
+
if use_plms:
|
749 |
+
assert ddim_steps is not None
|
750 |
+
use_ddim = ddim_steps is not None
|
751 |
+
# waveform_save_path = os.path.join(self.get_log_dir(), name)
|
752 |
+
# os.makedirs(waveform_save_path, exist_ok=True)
|
753 |
+
# print("Waveform save path: ", waveform_save_path)
|
754 |
+
|
755 |
+
with self.ema_scope("Generate"):
|
756 |
+
for batch in batchs:
|
757 |
+
z, c = self.get_input(
|
758 |
+
batch,
|
759 |
+
self.first_stage_key,
|
760 |
+
cond_key=self.cond_stage_key,
|
761 |
+
return_first_stage_outputs=False,
|
762 |
+
force_c_encode=True,
|
763 |
+
return_original_cond=False,
|
764 |
+
bs=None,
|
765 |
+
)
|
766 |
+
text = super().get_input(batch, "text")
|
767 |
+
|
768 |
+
# Generate multiple samples
|
769 |
+
batch_size = z.shape[0] * n_candidate_gen_per_text
|
770 |
+
|
771 |
+
_, h, w = z.shape[0], z.shape[2], z.shape[3]
|
772 |
+
|
773 |
+
mask = torch.ones(batch_size, h, w).to(self.device)
|
774 |
+
|
775 |
+
mask[:, int(h * time_mask_ratio_start_and_end[0]) : int(h * time_mask_ratio_start_and_end[1]), :] = 0
|
776 |
+
mask[:, :, int(w * freq_mask_ratio_start_and_end[0]) : int(w * freq_mask_ratio_start_and_end[1])] = 0
|
777 |
+
mask = mask[:, None, ...]
|
778 |
+
|
779 |
+
c = torch.cat([c] * n_candidate_gen_per_text, dim=0)
|
780 |
+
text = text * n_candidate_gen_per_text
|
781 |
+
|
782 |
+
if unconditional_guidance_scale != 1.0:
|
783 |
+
unconditional_conditioning = (
|
784 |
+
self.cond_stage_model.get_unconditional_condition(batch_size)
|
785 |
+
)
|
786 |
+
|
787 |
+
samples, _ = self.sample_log(
|
788 |
+
cond=c,
|
789 |
+
batch_size=batch_size,
|
790 |
+
x_T=x_T,
|
791 |
+
ddim=use_ddim,
|
792 |
+
ddim_steps=ddim_steps,
|
793 |
+
eta=ddim_eta,
|
794 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
795 |
+
unconditional_conditioning=unconditional_conditioning,
|
796 |
+
use_plms=use_plms, mask=mask, x0=torch.cat([z] * n_candidate_gen_per_text)
|
797 |
+
)
|
798 |
+
|
799 |
+
mel = self.decode_first_stage(samples)
|
800 |
+
|
801 |
+
waveform = self.mel_spectrogram_to_waveform(mel)
|
802 |
+
|
803 |
+
if waveform.shape[0] > 1:
|
804 |
+
similarity = self.cond_stage_model.cos_similarity(
|
805 |
+
torch.FloatTensor(waveform).squeeze(1), text
|
806 |
+
)
|
807 |
+
|
808 |
+
best_index = []
|
809 |
+
for i in range(z.shape[0]):
|
810 |
+
candidates = similarity[i :: z.shape[0]]
|
811 |
+
max_index = torch.argmax(candidates).item()
|
812 |
+
best_index.append(i + max_index * z.shape[0])
|
813 |
+
|
814 |
+
waveform = waveform[best_index]
|
815 |
+
# print("Similarity between generated audio and text", similarity)
|
816 |
+
# print("Choose the following indexes:", best_index)
|
817 |
+
|
818 |
+
return waveform
|
audioldm/pipeline.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import yaml
|
5 |
+
import torch
|
6 |
+
from torch import autocast
|
7 |
+
from tqdm import tqdm, trange
|
8 |
+
|
9 |
+
from audioldm import LatentDiffusion, seed_everything
|
10 |
+
from audioldm.utils import default_audioldm_config, get_duration, get_bit_depth, get_metadata, download_checkpoint
|
11 |
+
from audioldm.audio import wav_to_fbank, TacotronSTFT, read_wav_file
|
12 |
+
from audioldm.latent_diffusion.ddim import DDIMSampler
|
13 |
+
from einops import repeat
|
14 |
+
import os
|
15 |
+
|
16 |
+
def make_batch_for_text_to_audio(text, waveform=None, fbank=None, batchsize=1):
|
17 |
+
text = [text] * batchsize
|
18 |
+
if batchsize < 1:
|
19 |
+
print("Warning: Batchsize must be at least 1. Batchsize is set to .")
|
20 |
+
|
21 |
+
if(fbank is None):
|
22 |
+
fbank = torch.zeros((batchsize, 1024, 64)) # Not used, here to keep the code format
|
23 |
+
else:
|
24 |
+
fbank = torch.FloatTensor(fbank)
|
25 |
+
fbank = fbank.expand(batchsize, 1024, 64)
|
26 |
+
assert fbank.size(0) == batchsize
|
27 |
+
|
28 |
+
stft = torch.zeros((batchsize, 1024, 512)) # Not used
|
29 |
+
|
30 |
+
if(waveform is None):
|
31 |
+
waveform = torch.zeros((batchsize, 160000)) # Not used
|
32 |
+
else:
|
33 |
+
waveform = torch.FloatTensor(waveform)
|
34 |
+
waveform = waveform.expand(batchsize, -1)
|
35 |
+
assert waveform.size(0) == batchsize
|
36 |
+
|
37 |
+
fname = [""] * batchsize # Not used
|
38 |
+
|
39 |
+
batch = (
|
40 |
+
fbank,
|
41 |
+
stft,
|
42 |
+
None,
|
43 |
+
fname,
|
44 |
+
waveform,
|
45 |
+
text,
|
46 |
+
)
|
47 |
+
return batch
|
48 |
+
|
49 |
+
def round_up_duration(duration):
|
50 |
+
return int(round(duration/2.5) + 1) * 2.5
|
51 |
+
|
52 |
+
def build_model(
|
53 |
+
ckpt_path=None,
|
54 |
+
config=None,
|
55 |
+
model_name="audioldm-s-full"
|
56 |
+
):
|
57 |
+
print("Load AudioLDM: %s", model_name)
|
58 |
+
|
59 |
+
if(ckpt_path is None):
|
60 |
+
ckpt_path = get_metadata()[model_name]["path"]
|
61 |
+
|
62 |
+
if(not os.path.exists(ckpt_path)):
|
63 |
+
download_checkpoint(model_name)
|
64 |
+
|
65 |
+
if torch.cuda.is_available():
|
66 |
+
device = torch.device("cuda:0")
|
67 |
+
else:
|
68 |
+
device = torch.device("cpu")
|
69 |
+
|
70 |
+
if config is not None:
|
71 |
+
assert type(config) is str
|
72 |
+
config = yaml.load(open(config, "r"), Loader=yaml.FullLoader)
|
73 |
+
else:
|
74 |
+
config = default_audioldm_config(model_name)
|
75 |
+
|
76 |
+
# Use text as condition instead of using waveform during training
|
77 |
+
config["model"]["params"]["device"] = device
|
78 |
+
config["model"]["params"]["cond_stage_key"] = "text"
|
79 |
+
|
80 |
+
# No normalization here
|
81 |
+
latent_diffusion = LatentDiffusion(**config["model"]["params"])
|
82 |
+
|
83 |
+
resume_from_checkpoint = ckpt_path
|
84 |
+
|
85 |
+
checkpoint = torch.load(resume_from_checkpoint, map_location=device)
|
86 |
+
latent_diffusion.load_state_dict(checkpoint["state_dict"])
|
87 |
+
|
88 |
+
latent_diffusion.eval()
|
89 |
+
latent_diffusion = latent_diffusion.to(device)
|
90 |
+
|
91 |
+
latent_diffusion.cond_stage_model.embed_mode = "text"
|
92 |
+
return latent_diffusion
|
93 |
+
|
94 |
+
def duration_to_latent_t_size(duration):
|
95 |
+
return int(duration * 25.6)
|
96 |
+
|
97 |
+
def set_cond_audio(latent_diffusion):
|
98 |
+
latent_diffusion.cond_stage_key = "waveform"
|
99 |
+
latent_diffusion.cond_stage_model.embed_mode="audio"
|
100 |
+
return latent_diffusion
|
101 |
+
|
102 |
+
def set_cond_text(latent_diffusion):
|
103 |
+
latent_diffusion.cond_stage_key = "text"
|
104 |
+
latent_diffusion.cond_stage_model.embed_mode="text"
|
105 |
+
return latent_diffusion
|
106 |
+
|
107 |
+
def text_to_audio(
|
108 |
+
latent_diffusion,
|
109 |
+
text,
|
110 |
+
original_audio_file_path = None,
|
111 |
+
seed=42,
|
112 |
+
ddim_steps=200,
|
113 |
+
duration=10,
|
114 |
+
batchsize=1,
|
115 |
+
guidance_scale=2.5,
|
116 |
+
n_candidate_gen_per_text=3,
|
117 |
+
config=None,
|
118 |
+
):
|
119 |
+
seed_everything(int(seed))
|
120 |
+
waveform = None
|
121 |
+
if(original_audio_file_path is not None):
|
122 |
+
waveform = read_wav_file(original_audio_file_path, int(duration * 102.4) * 160)
|
123 |
+
|
124 |
+
batch = make_batch_for_text_to_audio(text, waveform=waveform, batchsize=batchsize)
|
125 |
+
|
126 |
+
latent_diffusion.latent_t_size = duration_to_latent_t_size(duration)
|
127 |
+
|
128 |
+
if(waveform is not None):
|
129 |
+
print("Generate audio that has similar content as %s" % original_audio_file_path)
|
130 |
+
latent_diffusion = set_cond_audio(latent_diffusion)
|
131 |
+
else:
|
132 |
+
print("Generate audio using text %s" % text)
|
133 |
+
latent_diffusion = set_cond_text(latent_diffusion)
|
134 |
+
|
135 |
+
with torch.no_grad():
|
136 |
+
waveform = latent_diffusion.generate_sample(
|
137 |
+
[batch],
|
138 |
+
unconditional_guidance_scale=guidance_scale,
|
139 |
+
ddim_steps=ddim_steps,
|
140 |
+
n_candidate_gen_per_text=n_candidate_gen_per_text,
|
141 |
+
duration=duration,
|
142 |
+
)
|
143 |
+
return waveform
|
144 |
+
|
145 |
+
def style_transfer(
|
146 |
+
latent_diffusion,
|
147 |
+
text,
|
148 |
+
original_audio_file_path,
|
149 |
+
transfer_strength,
|
150 |
+
seed=42,
|
151 |
+
duration=10,
|
152 |
+
batchsize=1,
|
153 |
+
guidance_scale=2.5,
|
154 |
+
ddim_steps=200,
|
155 |
+
config=None,
|
156 |
+
):
|
157 |
+
if torch.cuda.is_available():
|
158 |
+
device = torch.device("cuda:0")
|
159 |
+
else:
|
160 |
+
device = torch.device("cpu")
|
161 |
+
|
162 |
+
assert original_audio_file_path is not None, "You need to provide the original audio file path"
|
163 |
+
|
164 |
+
audio_file_duration = get_duration(original_audio_file_path)
|
165 |
+
|
166 |
+
assert get_bit_depth(original_audio_file_path) == 16, "The bit depth of the original audio file %s must be 16" % original_audio_file_path
|
167 |
+
|
168 |
+
# if(duration > 20):
|
169 |
+
# print("Warning: The duration of the audio file %s must be less than 20 seconds. Longer duration will result in Nan in model output (we are still debugging that); Automatically set duration to 20 seconds")
|
170 |
+
# duration = 20
|
171 |
+
|
172 |
+
if(duration >= audio_file_duration):
|
173 |
+
print("Warning: Duration you specified %s-seconds must equal or smaller than the audio file duration %ss" % (duration, audio_file_duration))
|
174 |
+
duration = round_up_duration(audio_file_duration)
|
175 |
+
print("Set new duration as %s-seconds" % duration)
|
176 |
+
|
177 |
+
# duration = round_up_duration(duration)
|
178 |
+
|
179 |
+
latent_diffusion = set_cond_text(latent_diffusion)
|
180 |
+
|
181 |
+
if config is not None:
|
182 |
+
assert type(config) is str
|
183 |
+
config = yaml.load(open(config, "r"), Loader=yaml.FullLoader)
|
184 |
+
else:
|
185 |
+
config = default_audioldm_config()
|
186 |
+
|
187 |
+
seed_everything(int(seed))
|
188 |
+
# latent_diffusion.latent_t_size = duration_to_latent_t_size(duration)
|
189 |
+
latent_diffusion.cond_stage_model.embed_mode = "text"
|
190 |
+
|
191 |
+
fn_STFT = TacotronSTFT(
|
192 |
+
config["preprocessing"]["stft"]["filter_length"],
|
193 |
+
config["preprocessing"]["stft"]["hop_length"],
|
194 |
+
config["preprocessing"]["stft"]["win_length"],
|
195 |
+
config["preprocessing"]["mel"]["n_mel_channels"],
|
196 |
+
config["preprocessing"]["audio"]["sampling_rate"],
|
197 |
+
config["preprocessing"]["mel"]["mel_fmin"],
|
198 |
+
config["preprocessing"]["mel"]["mel_fmax"],
|
199 |
+
)
|
200 |
+
|
201 |
+
mel, _, _ = wav_to_fbank(
|
202 |
+
original_audio_file_path, target_length=int(duration * 102.4), fn_STFT=fn_STFT
|
203 |
+
)
|
204 |
+
mel = mel.unsqueeze(0).unsqueeze(0).to(device)
|
205 |
+
mel = repeat(mel, "1 ... -> b ...", b=batchsize)
|
206 |
+
init_latent = latent_diffusion.get_first_stage_encoding(
|
207 |
+
latent_diffusion.encode_first_stage(mel)
|
208 |
+
) # move to latent space, encode and sample
|
209 |
+
if(torch.max(torch.abs(init_latent)) > 1e2):
|
210 |
+
init_latent = torch.clip(init_latent, min=-10, max=10)
|
211 |
+
sampler = DDIMSampler(latent_diffusion)
|
212 |
+
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=1.0, verbose=False)
|
213 |
+
|
214 |
+
t_enc = int(transfer_strength * ddim_steps)
|
215 |
+
prompts = text
|
216 |
+
|
217 |
+
with torch.no_grad():
|
218 |
+
with autocast("cuda"):
|
219 |
+
with latent_diffusion.ema_scope():
|
220 |
+
uc = None
|
221 |
+
if guidance_scale != 1.0:
|
222 |
+
uc = latent_diffusion.cond_stage_model.get_unconditional_condition(
|
223 |
+
batchsize
|
224 |
+
)
|
225 |
+
|
226 |
+
c = latent_diffusion.get_learned_conditioning([prompts] * batchsize)
|
227 |
+
z_enc = sampler.stochastic_encode(
|
228 |
+
init_latent, torch.tensor([t_enc] * batchsize).to(device)
|
229 |
+
)
|
230 |
+
samples = sampler.decode(
|
231 |
+
z_enc,
|
232 |
+
c,
|
233 |
+
t_enc,
|
234 |
+
unconditional_guidance_scale=guidance_scale,
|
235 |
+
unconditional_conditioning=uc,
|
236 |
+
)
|
237 |
+
# x_samples = latent_diffusion.decode_first_stage(samples) # Will result in Nan in output
|
238 |
+
# print(torch.sum(torch.isnan(samples)))
|
239 |
+
x_samples = latent_diffusion.decode_first_stage(samples)
|
240 |
+
# print(x_samples)
|
241 |
+
x_samples = latent_diffusion.decode_first_stage(samples[:,:,:-3,:])
|
242 |
+
# print(x_samples)
|
243 |
+
waveform = latent_diffusion.first_stage_model.decode_to_waveform(
|
244 |
+
x_samples
|
245 |
+
)
|
246 |
+
|
247 |
+
return waveform
|
248 |
+
|
249 |
+
def super_resolution_and_inpainting(
|
250 |
+
latent_diffusion,
|
251 |
+
text,
|
252 |
+
original_audio_file_path = None,
|
253 |
+
seed=42,
|
254 |
+
ddim_steps=200,
|
255 |
+
duration=None,
|
256 |
+
batchsize=1,
|
257 |
+
guidance_scale=2.5,
|
258 |
+
n_candidate_gen_per_text=3,
|
259 |
+
time_mask_ratio_start_and_end=(0.10, 0.15), # regenerate the 10% to 15% of the time steps in the spectrogram
|
260 |
+
# time_mask_ratio_start_and_end=(1.0, 1.0), # no inpainting
|
261 |
+
# freq_mask_ratio_start_and_end=(0.75, 1.0), # regenerate the higher 75% to 100% mel bins
|
262 |
+
freq_mask_ratio_start_and_end=(1.0, 1.0), # no super-resolution
|
263 |
+
config=None,
|
264 |
+
):
|
265 |
+
seed_everything(int(seed))
|
266 |
+
if config is not None:
|
267 |
+
assert type(config) is str
|
268 |
+
config = yaml.load(open(config, "r"), Loader=yaml.FullLoader)
|
269 |
+
else:
|
270 |
+
config = default_audioldm_config()
|
271 |
+
fn_STFT = TacotronSTFT(
|
272 |
+
config["preprocessing"]["stft"]["filter_length"],
|
273 |
+
config["preprocessing"]["stft"]["hop_length"],
|
274 |
+
config["preprocessing"]["stft"]["win_length"],
|
275 |
+
config["preprocessing"]["mel"]["n_mel_channels"],
|
276 |
+
config["preprocessing"]["audio"]["sampling_rate"],
|
277 |
+
config["preprocessing"]["mel"]["mel_fmin"],
|
278 |
+
config["preprocessing"]["mel"]["mel_fmax"],
|
279 |
+
)
|
280 |
+
|
281 |
+
# waveform = read_wav_file(original_audio_file_path, None)
|
282 |
+
mel, _, _ = wav_to_fbank(
|
283 |
+
original_audio_file_path, target_length=int(duration * 102.4), fn_STFT=fn_STFT
|
284 |
+
)
|
285 |
+
|
286 |
+
batch = make_batch_for_text_to_audio(text, fbank=mel[None,...], batchsize=batchsize)
|
287 |
+
|
288 |
+
# latent_diffusion.latent_t_size = duration_to_latent_t_size(duration)
|
289 |
+
latent_diffusion = set_cond_text(latent_diffusion)
|
290 |
+
|
291 |
+
with torch.no_grad():
|
292 |
+
waveform = latent_diffusion.generate_sample_masked(
|
293 |
+
[batch],
|
294 |
+
unconditional_guidance_scale=guidance_scale,
|
295 |
+
ddim_steps=ddim_steps,
|
296 |
+
n_candidate_gen_per_text=n_candidate_gen_per_text,
|
297 |
+
duration=duration,
|
298 |
+
time_mask_ratio_start_and_end=time_mask_ratio_start_and_end,
|
299 |
+
freq_mask_ratio_start_and_end=freq_mask_ratio_start_and_end
|
300 |
+
)
|
301 |
+
return waveform
|
audioldm/utils.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import importlib
|
3 |
+
|
4 |
+
from inspect import isfunction
|
5 |
+
import os
|
6 |
+
import soundfile as sf
|
7 |
+
import time
|
8 |
+
import wave
|
9 |
+
|
10 |
+
import urllib.request
|
11 |
+
import progressbar
|
12 |
+
|
13 |
+
CACHE_DIR = os.getenv(
|
14 |
+
"AUDIOLDM_CACHE_DIR",
|
15 |
+
os.path.join(os.path.expanduser("~"), ".cache/audioldm"))
|
16 |
+
|
17 |
+
def get_duration(fname):
|
18 |
+
with contextlib.closing(wave.open(fname, 'r')) as f:
|
19 |
+
frames = f.getnframes()
|
20 |
+
rate = f.getframerate()
|
21 |
+
return frames / float(rate)
|
22 |
+
|
23 |
+
def get_bit_depth(fname):
|
24 |
+
with contextlib.closing(wave.open(fname, 'r')) as f:
|
25 |
+
bit_depth = f.getsampwidth() * 8
|
26 |
+
return bit_depth
|
27 |
+
|
28 |
+
def get_time():
|
29 |
+
t = time.localtime()
|
30 |
+
return time.strftime("%d_%m_%Y_%H_%M_%S", t)
|
31 |
+
|
32 |
+
def seed_everything(seed):
|
33 |
+
import random, os
|
34 |
+
import numpy as np
|
35 |
+
import torch
|
36 |
+
|
37 |
+
random.seed(seed)
|
38 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
39 |
+
np.random.seed(seed)
|
40 |
+
torch.manual_seed(seed)
|
41 |
+
torch.cuda.manual_seed(seed)
|
42 |
+
torch.backends.cudnn.deterministic = True
|
43 |
+
torch.backends.cudnn.benchmark = True
|
44 |
+
|
45 |
+
|
46 |
+
def save_wave(waveform, savepath, name="outwav"):
|
47 |
+
if type(name) is not list:
|
48 |
+
name = [name] * waveform.shape[0]
|
49 |
+
|
50 |
+
for i in range(waveform.shape[0]):
|
51 |
+
path = os.path.join(
|
52 |
+
savepath,
|
53 |
+
"%s_%s.wav"
|
54 |
+
% (
|
55 |
+
os.path.basename(name[i])
|
56 |
+
if (not ".wav" in name[i])
|
57 |
+
else os.path.basename(name[i]).split(".")[0],
|
58 |
+
i,
|
59 |
+
),
|
60 |
+
)
|
61 |
+
print("Save audio to %s" % path)
|
62 |
+
sf.write(path, waveform[i, 0], samplerate=16000)
|
63 |
+
|
64 |
+
|
65 |
+
def exists(x):
|
66 |
+
return x is not None
|
67 |
+
|
68 |
+
|
69 |
+
def default(val, d):
|
70 |
+
if exists(val):
|
71 |
+
return val
|
72 |
+
return d() if isfunction(d) else d
|
73 |
+
|
74 |
+
|
75 |
+
def count_params(model, verbose=False):
|
76 |
+
total_params = sum(p.numel() for p in model.parameters())
|
77 |
+
if verbose:
|
78 |
+
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
|
79 |
+
return total_params
|
80 |
+
|
81 |
+
|
82 |
+
def get_obj_from_str(string, reload=False):
|
83 |
+
module, cls = string.rsplit(".", 1)
|
84 |
+
if reload:
|
85 |
+
module_imp = importlib.import_module(module)
|
86 |
+
importlib.reload(module_imp)
|
87 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
88 |
+
|
89 |
+
|
90 |
+
def instantiate_from_config(config):
|
91 |
+
if not "target" in config:
|
92 |
+
if config == "__is_first_stage__":
|
93 |
+
return None
|
94 |
+
elif config == "__is_unconditional__":
|
95 |
+
return None
|
96 |
+
raise KeyError("Expected key `target` to instantiate.")
|
97 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
98 |
+
|
99 |
+
|
100 |
+
def default_audioldm_config(model_name="audioldm-s-full"):
|
101 |
+
basic_config = {
|
102 |
+
"wave_file_save_path": "./output",
|
103 |
+
"id": {
|
104 |
+
"version": "v1",
|
105 |
+
"name": "default",
|
106 |
+
"root": "/mnt/fast/nobackup/users/hl01486/projects/general_audio_generation/AudioLDM-python/config/default/latent_diffusion.yaml",
|
107 |
+
},
|
108 |
+
"preprocessing": {
|
109 |
+
"audio": {"sampling_rate": 16000, "max_wav_value": 32768},
|
110 |
+
"stft": {"filter_length": 1024, "hop_length": 160, "win_length": 1024},
|
111 |
+
"mel": {
|
112 |
+
"n_mel_channels": 64,
|
113 |
+
"mel_fmin": 0,
|
114 |
+
"mel_fmax": 8000,
|
115 |
+
"freqm": 0,
|
116 |
+
"timem": 0,
|
117 |
+
"blur": False,
|
118 |
+
"mean": -4.63,
|
119 |
+
"std": 2.74,
|
120 |
+
"target_length": 1024,
|
121 |
+
},
|
122 |
+
},
|
123 |
+
"model": {
|
124 |
+
"device": "cuda",
|
125 |
+
"target": "audioldm.pipline.LatentDiffusion",
|
126 |
+
"params": {
|
127 |
+
"base_learning_rate": 5e-06,
|
128 |
+
"linear_start": 0.0015,
|
129 |
+
"linear_end": 0.0195,
|
130 |
+
"num_timesteps_cond": 1,
|
131 |
+
"log_every_t": 200,
|
132 |
+
"timesteps": 1000,
|
133 |
+
"first_stage_key": "fbank",
|
134 |
+
"cond_stage_key": "waveform",
|
135 |
+
"latent_t_size": 256,
|
136 |
+
"latent_f_size": 16,
|
137 |
+
"channels": 8,
|
138 |
+
"cond_stage_trainable": True,
|
139 |
+
"conditioning_key": "film",
|
140 |
+
"monitor": "val/loss_simple_ema",
|
141 |
+
"scale_by_std": True,
|
142 |
+
"unet_config": {
|
143 |
+
"target": "audioldm.latent_diffusion.openaimodel.UNetModel",
|
144 |
+
"params": {
|
145 |
+
"image_size": 64,
|
146 |
+
"extra_film_condition_dim": 512,
|
147 |
+
"extra_film_use_concat": True,
|
148 |
+
"in_channels": 8,
|
149 |
+
"out_channels": 8,
|
150 |
+
"model_channels": 128,
|
151 |
+
"attention_resolutions": [8, 4, 2],
|
152 |
+
"num_res_blocks": 2,
|
153 |
+
"channel_mult": [1, 2, 3, 5],
|
154 |
+
"num_head_channels": 32,
|
155 |
+
"use_spatial_transformer": True,
|
156 |
+
},
|
157 |
+
},
|
158 |
+
"first_stage_config": {
|
159 |
+
"base_learning_rate": 4.5e-05,
|
160 |
+
"target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL",
|
161 |
+
"params": {
|
162 |
+
"monitor": "val/rec_loss",
|
163 |
+
"image_key": "fbank",
|
164 |
+
"subband": 1,
|
165 |
+
"embed_dim": 8,
|
166 |
+
"time_shuffle": 1,
|
167 |
+
"ddconfig": {
|
168 |
+
"double_z": True,
|
169 |
+
"z_channels": 8,
|
170 |
+
"resolution": 256,
|
171 |
+
"downsample_time": False,
|
172 |
+
"in_channels": 1,
|
173 |
+
"out_ch": 1,
|
174 |
+
"ch": 128,
|
175 |
+
"ch_mult": [1, 2, 4],
|
176 |
+
"num_res_blocks": 2,
|
177 |
+
"attn_resolutions": [],
|
178 |
+
"dropout": 0.0,
|
179 |
+
},
|
180 |
+
},
|
181 |
+
},
|
182 |
+
"cond_stage_config": {
|
183 |
+
"target": "audioldm.clap.encoders.CLAPAudioEmbeddingClassifierFreev2",
|
184 |
+
"params": {
|
185 |
+
"key": "waveform",
|
186 |
+
"sampling_rate": 16000,
|
187 |
+
"embed_mode": "audio",
|
188 |
+
"unconditional_prob": 0.1,
|
189 |
+
},
|
190 |
+
},
|
191 |
+
},
|
192 |
+
},
|
193 |
+
}
|
194 |
+
|
195 |
+
if("-l-" in model_name):
|
196 |
+
basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 256
|
197 |
+
basic_config["model"]["params"]["unet_config"]["params"]["num_head_channels"] = 64
|
198 |
+
elif("-m-" in model_name):
|
199 |
+
basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 192
|
200 |
+
basic_config["model"]["params"]["cond_stage_config"]["params"]["amodel"] = "HTSAT-base" # This model use a larger HTAST
|
201 |
+
|
202 |
+
return basic_config
|
203 |
+
|
204 |
+
def get_metadata():
|
205 |
+
return {
|
206 |
+
"audioldm-s-full": {
|
207 |
+
"path": os.path.join(
|
208 |
+
CACHE_DIR,
|
209 |
+
"audioldm-s-full.ckpt",
|
210 |
+
),
|
211 |
+
"url": "https://zenodo.org/record/7600541/files/audioldm-s-full?download=1",
|
212 |
+
},
|
213 |
+
"audioldm-l-full": {
|
214 |
+
"path": os.path.join(
|
215 |
+
CACHE_DIR,
|
216 |
+
"audioldm-l-full.ckpt",
|
217 |
+
),
|
218 |
+
"url": "https://zenodo.org/record/7698295/files/audioldm-full-l.ckpt?download=1",
|
219 |
+
},
|
220 |
+
"audioldm-s-full-v2": {
|
221 |
+
"path": os.path.join(
|
222 |
+
CACHE_DIR,
|
223 |
+
"audioldm-s-full-v2.ckpt",
|
224 |
+
),
|
225 |
+
"url": "https://zenodo.org/record/7698295/files/audioldm-full-s-v2.ckpt?download=1",
|
226 |
+
},
|
227 |
+
"audioldm-m-text-ft": {
|
228 |
+
"path": os.path.join(
|
229 |
+
CACHE_DIR,
|
230 |
+
"audioldm-m-text-ft.ckpt",
|
231 |
+
),
|
232 |
+
"url": "https://zenodo.org/record/7813012/files/audioldm-m-text-ft.ckpt?download=1",
|
233 |
+
},
|
234 |
+
"audioldm-s-text-ft": {
|
235 |
+
"path": os.path.join(
|
236 |
+
CACHE_DIR,
|
237 |
+
"audioldm-s-text-ft.ckpt",
|
238 |
+
),
|
239 |
+
"url": "https://zenodo.org/record/7813012/files/audioldm-s-text-ft.ckpt?download=1",
|
240 |
+
},
|
241 |
+
"audioldm-m-full": {
|
242 |
+
"path": os.path.join(
|
243 |
+
CACHE_DIR,
|
244 |
+
"audioldm-m-full.ckpt",
|
245 |
+
),
|
246 |
+
"url": "https://zenodo.org/record/7813012/files/audioldm-m-full.ckpt?download=1",
|
247 |
+
},
|
248 |
+
}
|
249 |
+
|
250 |
+
class MyProgressBar():
|
251 |
+
def __init__(self):
|
252 |
+
self.pbar = None
|
253 |
+
|
254 |
+
def __call__(self, block_num, block_size, total_size):
|
255 |
+
if not self.pbar:
|
256 |
+
self.pbar=progressbar.ProgressBar(maxval=total_size)
|
257 |
+
self.pbar.start()
|
258 |
+
|
259 |
+
downloaded = block_num * block_size
|
260 |
+
if downloaded < total_size:
|
261 |
+
self.pbar.update(downloaded)
|
262 |
+
else:
|
263 |
+
self.pbar.finish()
|
264 |
+
|
265 |
+
def download_checkpoint(checkpoint_name="audioldm-s-full"):
|
266 |
+
meta = get_metadata()
|
267 |
+
if(checkpoint_name not in meta.keys()):
|
268 |
+
print("The model name you provided is not supported. Please use one of the following: ", meta.keys())
|
269 |
+
|
270 |
+
if not os.path.exists(meta[checkpoint_name]["path"]) or os.path.getsize(meta[checkpoint_name]["path"]) < 2*10**9:
|
271 |
+
os.makedirs(os.path.dirname(meta[checkpoint_name]["path"]), exist_ok=True)
|
272 |
+
print(f"Downloading the main structure of {checkpoint_name} into {os.path.dirname(meta[checkpoint_name]['path'])}")
|
273 |
+
|
274 |
+
urllib.request.urlretrieve(meta[checkpoint_name]["url"], meta[checkpoint_name]["path"], MyProgressBar())
|
275 |
+
print(
|
276 |
+
"Weights downloaded in: {} Size: {}".format(
|
277 |
+
meta[checkpoint_name]["path"],
|
278 |
+
os.path.getsize(meta[checkpoint_name]["path"]),
|
279 |
+
)
|
280 |
+
)
|
281 |
+
|
audioldm/variational_autoencoder/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .autoencoder import AutoencoderKL
|
audioldm/variational_autoencoder/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (220 Bytes). View file
|
|
audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-39.pyc
ADDED
Binary file (4.37 kB). View file
|
|
audioldm/variational_autoencoder/__pycache__/distributions.cpython-39.pyc
ADDED
Binary file (3.78 kB). View file
|
|
audioldm/variational_autoencoder/__pycache__/modules.cpython-39.pyc
ADDED
Binary file (22.1 kB). View file
|
|
audioldm/variational_autoencoder/autoencoder.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from audioldm.latent_diffusion.ema import *
|
3 |
+
from audioldm.variational_autoencoder.modules import Encoder, Decoder
|
4 |
+
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution
|
5 |
+
|
6 |
+
from audioldm.hifigan.utilities import get_vocoder, vocoder_infer
|
7 |
+
|
8 |
+
|
9 |
+
class AutoencoderKL(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
ddconfig=None,
|
13 |
+
lossconfig=None,
|
14 |
+
image_key="fbank",
|
15 |
+
embed_dim=None,
|
16 |
+
time_shuffle=1,
|
17 |
+
subband=1,
|
18 |
+
ckpt_path=None,
|
19 |
+
reload_from_ckpt=None,
|
20 |
+
ignore_keys=[],
|
21 |
+
colorize_nlabels=None,
|
22 |
+
monitor=None,
|
23 |
+
base_learning_rate=1e-5,
|
24 |
+
scale_factor=1
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
|
28 |
+
self.encoder = Encoder(**ddconfig)
|
29 |
+
self.decoder = Decoder(**ddconfig)
|
30 |
+
|
31 |
+
self.subband = int(subband)
|
32 |
+
|
33 |
+
if self.subband > 1:
|
34 |
+
print("Use subband decomposition %s" % self.subband)
|
35 |
+
|
36 |
+
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
|
37 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
38 |
+
|
39 |
+
self.vocoder = get_vocoder(None, "cpu")
|
40 |
+
self.embed_dim = embed_dim
|
41 |
+
|
42 |
+
if monitor is not None:
|
43 |
+
self.monitor = monitor
|
44 |
+
|
45 |
+
self.time_shuffle = time_shuffle
|
46 |
+
self.reload_from_ckpt = reload_from_ckpt
|
47 |
+
self.reloaded = False
|
48 |
+
self.mean, self.std = None, None
|
49 |
+
|
50 |
+
self.scale_factor = scale_factor
|
51 |
+
|
52 |
+
def encode(self, x):
|
53 |
+
# x = self.time_shuffle_operation(x)
|
54 |
+
x = self.freq_split_subband(x)
|
55 |
+
h = self.encoder(x)
|
56 |
+
moments = self.quant_conv(h)
|
57 |
+
posterior = DiagonalGaussianDistribution(moments)
|
58 |
+
return posterior
|
59 |
+
|
60 |
+
def decode(self, z):
|
61 |
+
z = self.post_quant_conv(z)
|
62 |
+
dec = self.decoder(z)
|
63 |
+
dec = self.freq_merge_subband(dec)
|
64 |
+
return dec
|
65 |
+
|
66 |
+
def decode_to_waveform(self, dec):
|
67 |
+
dec = dec.squeeze(1).permute(0, 2, 1)
|
68 |
+
wav_reconstruction = vocoder_infer(dec, self.vocoder)
|
69 |
+
return wav_reconstruction
|
70 |
+
|
71 |
+
def forward(self, input, sample_posterior=True):
|
72 |
+
posterior = self.encode(input)
|
73 |
+
if sample_posterior:
|
74 |
+
z = posterior.sample()
|
75 |
+
else:
|
76 |
+
z = posterior.mode()
|
77 |
+
|
78 |
+
if self.flag_first_run:
|
79 |
+
print("Latent size: ", z.size())
|
80 |
+
self.flag_first_run = False
|
81 |
+
|
82 |
+
dec = self.decode(z)
|
83 |
+
|
84 |
+
return dec, posterior
|
85 |
+
|
86 |
+
def freq_split_subband(self, fbank):
|
87 |
+
if self.subband == 1 or self.image_key != "stft":
|
88 |
+
return fbank
|
89 |
+
|
90 |
+
bs, ch, tstep, fbins = fbank.size()
|
91 |
+
|
92 |
+
assert fbank.size(-1) % self.subband == 0
|
93 |
+
assert ch == 1
|
94 |
+
|
95 |
+
return (
|
96 |
+
fbank.squeeze(1)
|
97 |
+
.reshape(bs, tstep, self.subband, fbins // self.subband)
|
98 |
+
.permute(0, 2, 1, 3)
|
99 |
+
)
|
100 |
+
|
101 |
+
def freq_merge_subband(self, subband_fbank):
|
102 |
+
if self.subband == 1 or self.image_key != "stft":
|
103 |
+
return subband_fbank
|
104 |
+
assert subband_fbank.size(1) == self.subband # Channel dimension
|
105 |
+
bs, sub_ch, tstep, fbins = subband_fbank.size()
|
106 |
+
return subband_fbank.permute(0, 2, 1, 3).reshape(bs, tstep, -1).unsqueeze(1)
|
107 |
+
|
108 |
+
def device(self):
|
109 |
+
return next(self.parameters()).device
|
110 |
+
|
111 |
+
@torch.no_grad()
|
112 |
+
def encode_first_stage(self, x):
|
113 |
+
return self.encode(x)
|
114 |
+
|
115 |
+
@torch.no_grad()
|
116 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
117 |
+
if predict_cids:
|
118 |
+
if z.dim() == 4:
|
119 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
120 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
121 |
+
z = rearrange(z, "b h w c -> b c h w").contiguous()
|
122 |
+
|
123 |
+
z = 1.0 / self.scale_factor * z
|
124 |
+
return self.decode(z)
|
125 |
+
|
126 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
127 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
128 |
+
z = encoder_posterior.sample()
|
129 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
130 |
+
z = encoder_posterior
|
131 |
+
else:
|
132 |
+
raise NotImplementedError(
|
133 |
+
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
|
134 |
+
)
|
135 |
+
return self.scale_factor * z
|
audioldm/variational_autoencoder/distributions.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(
|
34 |
+
device=self.parameters.device
|
35 |
+
)
|
36 |
+
|
37 |
+
def sample(self):
|
38 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(
|
39 |
+
device=self.parameters.device
|
40 |
+
)
|
41 |
+
return x
|
42 |
+
|
43 |
+
def kl(self, other=None):
|
44 |
+
if self.deterministic:
|
45 |
+
return torch.Tensor([0.0])
|
46 |
+
else:
|
47 |
+
if other is None:
|
48 |
+
return 0.5 * torch.mean(
|
49 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
50 |
+
dim=[1, 2, 3],
|
51 |
+
)
|
52 |
+
else:
|
53 |
+
return 0.5 * torch.mean(
|
54 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
55 |
+
+ self.var / other.var
|
56 |
+
- 1.0
|
57 |
+
- self.logvar
|
58 |
+
+ other.logvar,
|
59 |
+
dim=[1, 2, 3],
|
60 |
+
)
|
61 |
+
|
62 |
+
def nll(self, sample, dims=[1, 2, 3]):
|
63 |
+
if self.deterministic:
|
64 |
+
return torch.Tensor([0.0])
|
65 |
+
logtwopi = np.log(2.0 * np.pi)
|
66 |
+
return 0.5 * torch.sum(
|
67 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
68 |
+
dim=dims,
|
69 |
+
)
|
70 |
+
|
71 |
+
def mode(self):
|
72 |
+
return self.mean
|
73 |
+
|
74 |
+
|
75 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
76 |
+
"""
|
77 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
78 |
+
Compute the KL divergence between two gaussians.
|
79 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
80 |
+
scalars, among other use cases.
|
81 |
+
"""
|
82 |
+
tensor = None
|
83 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
84 |
+
if isinstance(obj, torch.Tensor):
|
85 |
+
tensor = obj
|
86 |
+
break
|
87 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
88 |
+
|
89 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
90 |
+
# Tensors, but it does not work for torch.exp().
|
91 |
+
logvar1, logvar2 = [
|
92 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
93 |
+
for x in (logvar1, logvar2)
|
94 |
+
]
|
95 |
+
|
96 |
+
return 0.5 * (
|
97 |
+
-1.0
|
98 |
+
+ logvar2
|
99 |
+
- logvar1
|
100 |
+
+ torch.exp(logvar1 - logvar2)
|
101 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
102 |
+
)
|
audioldm/variational_autoencoder/modules.py
ADDED
@@ -0,0 +1,1066 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from audioldm.utils import instantiate_from_config
|
9 |
+
from audioldm.latent_diffusion.attention import LinearAttention
|
10 |
+
|
11 |
+
|
12 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
13 |
+
"""
|
14 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
15 |
+
From Fairseq.
|
16 |
+
Build sinusoidal embeddings.
|
17 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
18 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
19 |
+
"""
|
20 |
+
assert len(timesteps.shape) == 1
|
21 |
+
|
22 |
+
half_dim = embedding_dim // 2
|
23 |
+
emb = math.log(10000) / (half_dim - 1)
|
24 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
25 |
+
emb = emb.to(device=timesteps.device)
|
26 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
27 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
28 |
+
if embedding_dim % 2 == 1: # zero pad
|
29 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
30 |
+
return emb
|
31 |
+
|
32 |
+
|
33 |
+
def nonlinearity(x):
|
34 |
+
# swish
|
35 |
+
return x * torch.sigmoid(x)
|
36 |
+
|
37 |
+
|
38 |
+
def Normalize(in_channels, num_groups=32):
|
39 |
+
return torch.nn.GroupNorm(
|
40 |
+
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
class Upsample(nn.Module):
|
45 |
+
def __init__(self, in_channels, with_conv):
|
46 |
+
super().__init__()
|
47 |
+
self.with_conv = with_conv
|
48 |
+
if self.with_conv:
|
49 |
+
self.conv = torch.nn.Conv2d(
|
50 |
+
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
51 |
+
)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
55 |
+
if self.with_conv:
|
56 |
+
x = self.conv(x)
|
57 |
+
return x
|
58 |
+
|
59 |
+
|
60 |
+
class UpsampleTimeStride4(nn.Module):
|
61 |
+
def __init__(self, in_channels, with_conv):
|
62 |
+
super().__init__()
|
63 |
+
self.with_conv = with_conv
|
64 |
+
if self.with_conv:
|
65 |
+
self.conv = torch.nn.Conv2d(
|
66 |
+
in_channels, in_channels, kernel_size=5, stride=1, padding=2
|
67 |
+
)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
x = torch.nn.functional.interpolate(x, scale_factor=(4.0, 2.0), mode="nearest")
|
71 |
+
if self.with_conv:
|
72 |
+
x = self.conv(x)
|
73 |
+
return x
|
74 |
+
|
75 |
+
|
76 |
+
class Downsample(nn.Module):
|
77 |
+
def __init__(self, in_channels, with_conv):
|
78 |
+
super().__init__()
|
79 |
+
self.with_conv = with_conv
|
80 |
+
if self.with_conv:
|
81 |
+
# Do time downsampling here
|
82 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
83 |
+
self.conv = torch.nn.Conv2d(
|
84 |
+
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
85 |
+
)
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
if self.with_conv:
|
89 |
+
pad = (0, 1, 0, 1)
|
90 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
91 |
+
x = self.conv(x)
|
92 |
+
else:
|
93 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
94 |
+
return x
|
95 |
+
|
96 |
+
|
97 |
+
class DownsampleTimeStride4(nn.Module):
|
98 |
+
def __init__(self, in_channels, with_conv):
|
99 |
+
super().__init__()
|
100 |
+
self.with_conv = with_conv
|
101 |
+
if self.with_conv:
|
102 |
+
# Do time downsampling here
|
103 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
104 |
+
self.conv = torch.nn.Conv2d(
|
105 |
+
in_channels, in_channels, kernel_size=5, stride=(4, 2), padding=1
|
106 |
+
)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
if self.with_conv:
|
110 |
+
pad = (0, 1, 0, 1)
|
111 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
112 |
+
x = self.conv(x)
|
113 |
+
else:
|
114 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=(4, 2), stride=(4, 2))
|
115 |
+
return x
|
116 |
+
|
117 |
+
|
118 |
+
class ResnetBlock(nn.Module):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
*,
|
122 |
+
in_channels,
|
123 |
+
out_channels=None,
|
124 |
+
conv_shortcut=False,
|
125 |
+
dropout,
|
126 |
+
temb_channels=512,
|
127 |
+
):
|
128 |
+
super().__init__()
|
129 |
+
self.in_channels = in_channels
|
130 |
+
out_channels = in_channels if out_channels is None else out_channels
|
131 |
+
self.out_channels = out_channels
|
132 |
+
self.use_conv_shortcut = conv_shortcut
|
133 |
+
|
134 |
+
self.norm1 = Normalize(in_channels)
|
135 |
+
self.conv1 = torch.nn.Conv2d(
|
136 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
137 |
+
)
|
138 |
+
if temb_channels > 0:
|
139 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
140 |
+
self.norm2 = Normalize(out_channels)
|
141 |
+
self.dropout = torch.nn.Dropout(dropout)
|
142 |
+
self.conv2 = torch.nn.Conv2d(
|
143 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
144 |
+
)
|
145 |
+
if self.in_channels != self.out_channels:
|
146 |
+
if self.use_conv_shortcut:
|
147 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
148 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
149 |
+
)
|
150 |
+
else:
|
151 |
+
self.nin_shortcut = torch.nn.Conv2d(
|
152 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
153 |
+
)
|
154 |
+
|
155 |
+
def forward(self, x, temb):
|
156 |
+
h = x
|
157 |
+
h = self.norm1(h)
|
158 |
+
h = nonlinearity(h)
|
159 |
+
h = self.conv1(h)
|
160 |
+
|
161 |
+
if temb is not None:
|
162 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
163 |
+
|
164 |
+
h = self.norm2(h)
|
165 |
+
h = nonlinearity(h)
|
166 |
+
h = self.dropout(h)
|
167 |
+
h = self.conv2(h)
|
168 |
+
|
169 |
+
if self.in_channels != self.out_channels:
|
170 |
+
if self.use_conv_shortcut:
|
171 |
+
x = self.conv_shortcut(x)
|
172 |
+
else:
|
173 |
+
x = self.nin_shortcut(x)
|
174 |
+
|
175 |
+
return x + h
|
176 |
+
|
177 |
+
|
178 |
+
class LinAttnBlock(LinearAttention):
|
179 |
+
"""to match AttnBlock usage"""
|
180 |
+
|
181 |
+
def __init__(self, in_channels):
|
182 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
183 |
+
|
184 |
+
|
185 |
+
class AttnBlock(nn.Module):
|
186 |
+
def __init__(self, in_channels):
|
187 |
+
super().__init__()
|
188 |
+
self.in_channels = in_channels
|
189 |
+
|
190 |
+
self.norm = Normalize(in_channels)
|
191 |
+
self.q = torch.nn.Conv2d(
|
192 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
193 |
+
)
|
194 |
+
self.k = torch.nn.Conv2d(
|
195 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
196 |
+
)
|
197 |
+
self.v = torch.nn.Conv2d(
|
198 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
199 |
+
)
|
200 |
+
self.proj_out = torch.nn.Conv2d(
|
201 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
202 |
+
)
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
h_ = x
|
206 |
+
h_ = self.norm(h_)
|
207 |
+
q = self.q(h_)
|
208 |
+
k = self.k(h_)
|
209 |
+
v = self.v(h_)
|
210 |
+
|
211 |
+
# compute attention
|
212 |
+
b, c, h, w = q.shape
|
213 |
+
q = q.reshape(b, c, h * w).contiguous()
|
214 |
+
q = q.permute(0, 2, 1).contiguous() # b,hw,c
|
215 |
+
k = k.reshape(b, c, h * w).contiguous() # b,c,hw
|
216 |
+
w_ = torch.bmm(q, k).contiguous() # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
217 |
+
w_ = w_ * (int(c) ** (-0.5))
|
218 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
219 |
+
|
220 |
+
# attend to values
|
221 |
+
v = v.reshape(b, c, h * w).contiguous()
|
222 |
+
w_ = w_.permute(0, 2, 1).contiguous() # b,hw,hw (first hw of k, second of q)
|
223 |
+
h_ = torch.bmm(
|
224 |
+
v, w_
|
225 |
+
).contiguous() # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
226 |
+
h_ = h_.reshape(b, c, h, w).contiguous()
|
227 |
+
|
228 |
+
h_ = self.proj_out(h_)
|
229 |
+
|
230 |
+
return x + h_
|
231 |
+
|
232 |
+
|
233 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
234 |
+
assert attn_type in ["vanilla", "linear", "none"], f"attn_type {attn_type} unknown"
|
235 |
+
# print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
236 |
+
if attn_type == "vanilla":
|
237 |
+
return AttnBlock(in_channels)
|
238 |
+
elif attn_type == "none":
|
239 |
+
return nn.Identity(in_channels)
|
240 |
+
else:
|
241 |
+
return LinAttnBlock(in_channels)
|
242 |
+
|
243 |
+
|
244 |
+
class Model(nn.Module):
|
245 |
+
def __init__(
|
246 |
+
self,
|
247 |
+
*,
|
248 |
+
ch,
|
249 |
+
out_ch,
|
250 |
+
ch_mult=(1, 2, 4, 8),
|
251 |
+
num_res_blocks,
|
252 |
+
attn_resolutions,
|
253 |
+
dropout=0.0,
|
254 |
+
resamp_with_conv=True,
|
255 |
+
in_channels,
|
256 |
+
resolution,
|
257 |
+
use_timestep=True,
|
258 |
+
use_linear_attn=False,
|
259 |
+
attn_type="vanilla",
|
260 |
+
):
|
261 |
+
super().__init__()
|
262 |
+
if use_linear_attn:
|
263 |
+
attn_type = "linear"
|
264 |
+
self.ch = ch
|
265 |
+
self.temb_ch = self.ch * 4
|
266 |
+
self.num_resolutions = len(ch_mult)
|
267 |
+
self.num_res_blocks = num_res_blocks
|
268 |
+
self.resolution = resolution
|
269 |
+
self.in_channels = in_channels
|
270 |
+
|
271 |
+
self.use_timestep = use_timestep
|
272 |
+
if self.use_timestep:
|
273 |
+
# timestep embedding
|
274 |
+
self.temb = nn.Module()
|
275 |
+
self.temb.dense = nn.ModuleList(
|
276 |
+
[
|
277 |
+
torch.nn.Linear(self.ch, self.temb_ch),
|
278 |
+
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
279 |
+
]
|
280 |
+
)
|
281 |
+
|
282 |
+
# downsampling
|
283 |
+
self.conv_in = torch.nn.Conv2d(
|
284 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
285 |
+
)
|
286 |
+
|
287 |
+
curr_res = resolution
|
288 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
289 |
+
self.down = nn.ModuleList()
|
290 |
+
for i_level in range(self.num_resolutions):
|
291 |
+
block = nn.ModuleList()
|
292 |
+
attn = nn.ModuleList()
|
293 |
+
block_in = ch * in_ch_mult[i_level]
|
294 |
+
block_out = ch * ch_mult[i_level]
|
295 |
+
for i_block in range(self.num_res_blocks):
|
296 |
+
block.append(
|
297 |
+
ResnetBlock(
|
298 |
+
in_channels=block_in,
|
299 |
+
out_channels=block_out,
|
300 |
+
temb_channels=self.temb_ch,
|
301 |
+
dropout=dropout,
|
302 |
+
)
|
303 |
+
)
|
304 |
+
block_in = block_out
|
305 |
+
if curr_res in attn_resolutions:
|
306 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
307 |
+
down = nn.Module()
|
308 |
+
down.block = block
|
309 |
+
down.attn = attn
|
310 |
+
if i_level != self.num_resolutions - 1:
|
311 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
312 |
+
curr_res = curr_res // 2
|
313 |
+
self.down.append(down)
|
314 |
+
|
315 |
+
# middle
|
316 |
+
self.mid = nn.Module()
|
317 |
+
self.mid.block_1 = ResnetBlock(
|
318 |
+
in_channels=block_in,
|
319 |
+
out_channels=block_in,
|
320 |
+
temb_channels=self.temb_ch,
|
321 |
+
dropout=dropout,
|
322 |
+
)
|
323 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
324 |
+
self.mid.block_2 = ResnetBlock(
|
325 |
+
in_channels=block_in,
|
326 |
+
out_channels=block_in,
|
327 |
+
temb_channels=self.temb_ch,
|
328 |
+
dropout=dropout,
|
329 |
+
)
|
330 |
+
|
331 |
+
# upsampling
|
332 |
+
self.up = nn.ModuleList()
|
333 |
+
for i_level in reversed(range(self.num_resolutions)):
|
334 |
+
block = nn.ModuleList()
|
335 |
+
attn = nn.ModuleList()
|
336 |
+
block_out = ch * ch_mult[i_level]
|
337 |
+
skip_in = ch * ch_mult[i_level]
|
338 |
+
for i_block in range(self.num_res_blocks + 1):
|
339 |
+
if i_block == self.num_res_blocks:
|
340 |
+
skip_in = ch * in_ch_mult[i_level]
|
341 |
+
block.append(
|
342 |
+
ResnetBlock(
|
343 |
+
in_channels=block_in + skip_in,
|
344 |
+
out_channels=block_out,
|
345 |
+
temb_channels=self.temb_ch,
|
346 |
+
dropout=dropout,
|
347 |
+
)
|
348 |
+
)
|
349 |
+
block_in = block_out
|
350 |
+
if curr_res in attn_resolutions:
|
351 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
352 |
+
up = nn.Module()
|
353 |
+
up.block = block
|
354 |
+
up.attn = attn
|
355 |
+
if i_level != 0:
|
356 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
357 |
+
curr_res = curr_res * 2
|
358 |
+
self.up.insert(0, up) # prepend to get consistent order
|
359 |
+
|
360 |
+
# end
|
361 |
+
self.norm_out = Normalize(block_in)
|
362 |
+
self.conv_out = torch.nn.Conv2d(
|
363 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
364 |
+
)
|
365 |
+
|
366 |
+
def forward(self, x, t=None, context=None):
|
367 |
+
# assert x.shape[2] == x.shape[3] == self.resolution
|
368 |
+
if context is not None:
|
369 |
+
# assume aligned context, cat along channel axis
|
370 |
+
x = torch.cat((x, context), dim=1)
|
371 |
+
if self.use_timestep:
|
372 |
+
# timestep embedding
|
373 |
+
assert t is not None
|
374 |
+
temb = get_timestep_embedding(t, self.ch)
|
375 |
+
temb = self.temb.dense[0](temb)
|
376 |
+
temb = nonlinearity(temb)
|
377 |
+
temb = self.temb.dense[1](temb)
|
378 |
+
else:
|
379 |
+
temb = None
|
380 |
+
|
381 |
+
# downsampling
|
382 |
+
hs = [self.conv_in(x)]
|
383 |
+
for i_level in range(self.num_resolutions):
|
384 |
+
for i_block in range(self.num_res_blocks):
|
385 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
386 |
+
if len(self.down[i_level].attn) > 0:
|
387 |
+
h = self.down[i_level].attn[i_block](h)
|
388 |
+
hs.append(h)
|
389 |
+
if i_level != self.num_resolutions - 1:
|
390 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
391 |
+
|
392 |
+
# middle
|
393 |
+
h = hs[-1]
|
394 |
+
h = self.mid.block_1(h, temb)
|
395 |
+
h = self.mid.attn_1(h)
|
396 |
+
h = self.mid.block_2(h, temb)
|
397 |
+
|
398 |
+
# upsampling
|
399 |
+
for i_level in reversed(range(self.num_resolutions)):
|
400 |
+
for i_block in range(self.num_res_blocks + 1):
|
401 |
+
h = self.up[i_level].block[i_block](
|
402 |
+
torch.cat([h, hs.pop()], dim=1), temb
|
403 |
+
)
|
404 |
+
if len(self.up[i_level].attn) > 0:
|
405 |
+
h = self.up[i_level].attn[i_block](h)
|
406 |
+
if i_level != 0:
|
407 |
+
h = self.up[i_level].upsample(h)
|
408 |
+
|
409 |
+
# end
|
410 |
+
h = self.norm_out(h)
|
411 |
+
h = nonlinearity(h)
|
412 |
+
h = self.conv_out(h)
|
413 |
+
return h
|
414 |
+
|
415 |
+
def get_last_layer(self):
|
416 |
+
return self.conv_out.weight
|
417 |
+
|
418 |
+
|
419 |
+
class Encoder(nn.Module):
|
420 |
+
def __init__(
|
421 |
+
self,
|
422 |
+
*,
|
423 |
+
ch,
|
424 |
+
out_ch,
|
425 |
+
ch_mult=(1, 2, 4, 8),
|
426 |
+
num_res_blocks,
|
427 |
+
attn_resolutions,
|
428 |
+
dropout=0.0,
|
429 |
+
resamp_with_conv=True,
|
430 |
+
in_channels,
|
431 |
+
resolution,
|
432 |
+
z_channels,
|
433 |
+
double_z=True,
|
434 |
+
use_linear_attn=False,
|
435 |
+
attn_type="vanilla",
|
436 |
+
downsample_time_stride4_levels=[],
|
437 |
+
**ignore_kwargs,
|
438 |
+
):
|
439 |
+
super().__init__()
|
440 |
+
if use_linear_attn:
|
441 |
+
attn_type = "linear"
|
442 |
+
self.ch = ch
|
443 |
+
self.temb_ch = 0
|
444 |
+
self.num_resolutions = len(ch_mult)
|
445 |
+
self.num_res_blocks = num_res_blocks
|
446 |
+
self.resolution = resolution
|
447 |
+
self.in_channels = in_channels
|
448 |
+
self.downsample_time_stride4_levels = downsample_time_stride4_levels
|
449 |
+
|
450 |
+
if len(self.downsample_time_stride4_levels) > 0:
|
451 |
+
assert max(self.downsample_time_stride4_levels) < self.num_resolutions, (
|
452 |
+
"The level to perform downsample 4 operation need to be smaller than the total resolution number %s"
|
453 |
+
% str(self.num_resolutions)
|
454 |
+
)
|
455 |
+
|
456 |
+
# downsampling
|
457 |
+
self.conv_in = torch.nn.Conv2d(
|
458 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
459 |
+
)
|
460 |
+
|
461 |
+
curr_res = resolution
|
462 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
463 |
+
self.in_ch_mult = in_ch_mult
|
464 |
+
self.down = nn.ModuleList()
|
465 |
+
for i_level in range(self.num_resolutions):
|
466 |
+
block = nn.ModuleList()
|
467 |
+
attn = nn.ModuleList()
|
468 |
+
block_in = ch * in_ch_mult[i_level]
|
469 |
+
block_out = ch * ch_mult[i_level]
|
470 |
+
for i_block in range(self.num_res_blocks):
|
471 |
+
block.append(
|
472 |
+
ResnetBlock(
|
473 |
+
in_channels=block_in,
|
474 |
+
out_channels=block_out,
|
475 |
+
temb_channels=self.temb_ch,
|
476 |
+
dropout=dropout,
|
477 |
+
)
|
478 |
+
)
|
479 |
+
block_in = block_out
|
480 |
+
if curr_res in attn_resolutions:
|
481 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
482 |
+
down = nn.Module()
|
483 |
+
down.block = block
|
484 |
+
down.attn = attn
|
485 |
+
if i_level != self.num_resolutions - 1:
|
486 |
+
if i_level in self.downsample_time_stride4_levels:
|
487 |
+
down.downsample = DownsampleTimeStride4(block_in, resamp_with_conv)
|
488 |
+
else:
|
489 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
490 |
+
curr_res = curr_res // 2
|
491 |
+
self.down.append(down)
|
492 |
+
|
493 |
+
# middle
|
494 |
+
self.mid = nn.Module()
|
495 |
+
self.mid.block_1 = ResnetBlock(
|
496 |
+
in_channels=block_in,
|
497 |
+
out_channels=block_in,
|
498 |
+
temb_channels=self.temb_ch,
|
499 |
+
dropout=dropout,
|
500 |
+
)
|
501 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
502 |
+
self.mid.block_2 = ResnetBlock(
|
503 |
+
in_channels=block_in,
|
504 |
+
out_channels=block_in,
|
505 |
+
temb_channels=self.temb_ch,
|
506 |
+
dropout=dropout,
|
507 |
+
)
|
508 |
+
|
509 |
+
# end
|
510 |
+
self.norm_out = Normalize(block_in)
|
511 |
+
self.conv_out = torch.nn.Conv2d(
|
512 |
+
block_in,
|
513 |
+
2 * z_channels if double_z else z_channels,
|
514 |
+
kernel_size=3,
|
515 |
+
stride=1,
|
516 |
+
padding=1,
|
517 |
+
)
|
518 |
+
|
519 |
+
def forward(self, x):
|
520 |
+
# timestep embedding
|
521 |
+
temb = None
|
522 |
+
# downsampling
|
523 |
+
hs = [self.conv_in(x)]
|
524 |
+
for i_level in range(self.num_resolutions):
|
525 |
+
for i_block in range(self.num_res_blocks):
|
526 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
527 |
+
if len(self.down[i_level].attn) > 0:
|
528 |
+
h = self.down[i_level].attn[i_block](h)
|
529 |
+
hs.append(h)
|
530 |
+
if i_level != self.num_resolutions - 1:
|
531 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
532 |
+
|
533 |
+
# middle
|
534 |
+
h = hs[-1]
|
535 |
+
h = self.mid.block_1(h, temb)
|
536 |
+
h = self.mid.attn_1(h)
|
537 |
+
h = self.mid.block_2(h, temb)
|
538 |
+
|
539 |
+
# end
|
540 |
+
h = self.norm_out(h)
|
541 |
+
h = nonlinearity(h)
|
542 |
+
h = self.conv_out(h)
|
543 |
+
return h
|
544 |
+
|
545 |
+
|
546 |
+
class Decoder(nn.Module):
|
547 |
+
def __init__(
|
548 |
+
self,
|
549 |
+
*,
|
550 |
+
ch,
|
551 |
+
out_ch,
|
552 |
+
ch_mult=(1, 2, 4, 8),
|
553 |
+
num_res_blocks,
|
554 |
+
attn_resolutions,
|
555 |
+
dropout=0.0,
|
556 |
+
resamp_with_conv=True,
|
557 |
+
in_channels,
|
558 |
+
resolution,
|
559 |
+
z_channels,
|
560 |
+
give_pre_end=False,
|
561 |
+
tanh_out=False,
|
562 |
+
use_linear_attn=False,
|
563 |
+
downsample_time_stride4_levels=[],
|
564 |
+
attn_type="vanilla",
|
565 |
+
**ignorekwargs,
|
566 |
+
):
|
567 |
+
super().__init__()
|
568 |
+
if use_linear_attn:
|
569 |
+
attn_type = "linear"
|
570 |
+
self.ch = ch
|
571 |
+
self.temb_ch = 0
|
572 |
+
self.num_resolutions = len(ch_mult)
|
573 |
+
self.num_res_blocks = num_res_blocks
|
574 |
+
self.resolution = resolution
|
575 |
+
self.in_channels = in_channels
|
576 |
+
self.give_pre_end = give_pre_end
|
577 |
+
self.tanh_out = tanh_out
|
578 |
+
self.downsample_time_stride4_levels = downsample_time_stride4_levels
|
579 |
+
|
580 |
+
if len(self.downsample_time_stride4_levels) > 0:
|
581 |
+
assert max(self.downsample_time_stride4_levels) < self.num_resolutions, (
|
582 |
+
"The level to perform downsample 4 operation need to be smaller than the total resolution number %s"
|
583 |
+
% str(self.num_resolutions)
|
584 |
+
)
|
585 |
+
|
586 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
587 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
588 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
589 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
590 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
591 |
+
# print("Working with z of shape {} = {} dimensions.".format(
|
592 |
+
# self.z_shape, np.prod(self.z_shape)))
|
593 |
+
|
594 |
+
# z to block_in
|
595 |
+
self.conv_in = torch.nn.Conv2d(
|
596 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
597 |
+
)
|
598 |
+
|
599 |
+
# middle
|
600 |
+
self.mid = nn.Module()
|
601 |
+
self.mid.block_1 = ResnetBlock(
|
602 |
+
in_channels=block_in,
|
603 |
+
out_channels=block_in,
|
604 |
+
temb_channels=self.temb_ch,
|
605 |
+
dropout=dropout,
|
606 |
+
)
|
607 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
608 |
+
self.mid.block_2 = ResnetBlock(
|
609 |
+
in_channels=block_in,
|
610 |
+
out_channels=block_in,
|
611 |
+
temb_channels=self.temb_ch,
|
612 |
+
dropout=dropout,
|
613 |
+
)
|
614 |
+
|
615 |
+
# upsampling
|
616 |
+
self.up = nn.ModuleList()
|
617 |
+
for i_level in reversed(range(self.num_resolutions)):
|
618 |
+
block = nn.ModuleList()
|
619 |
+
attn = nn.ModuleList()
|
620 |
+
block_out = ch * ch_mult[i_level]
|
621 |
+
for i_block in range(self.num_res_blocks + 1):
|
622 |
+
block.append(
|
623 |
+
ResnetBlock(
|
624 |
+
in_channels=block_in,
|
625 |
+
out_channels=block_out,
|
626 |
+
temb_channels=self.temb_ch,
|
627 |
+
dropout=dropout,
|
628 |
+
)
|
629 |
+
)
|
630 |
+
block_in = block_out
|
631 |
+
if curr_res in attn_resolutions:
|
632 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
633 |
+
up = nn.Module()
|
634 |
+
up.block = block
|
635 |
+
up.attn = attn
|
636 |
+
if i_level != 0:
|
637 |
+
if i_level - 1 in self.downsample_time_stride4_levels:
|
638 |
+
up.upsample = UpsampleTimeStride4(block_in, resamp_with_conv)
|
639 |
+
else:
|
640 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
641 |
+
curr_res = curr_res * 2
|
642 |
+
self.up.insert(0, up) # prepend to get consistent order
|
643 |
+
|
644 |
+
# end
|
645 |
+
self.norm_out = Normalize(block_in)
|
646 |
+
self.conv_out = torch.nn.Conv2d(
|
647 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
648 |
+
)
|
649 |
+
|
650 |
+
def forward(self, z):
|
651 |
+
# assert z.shape[1:] == self.z_shape[1:]
|
652 |
+
self.last_z_shape = z.shape
|
653 |
+
|
654 |
+
# timestep embedding
|
655 |
+
temb = None
|
656 |
+
|
657 |
+
# z to block_in
|
658 |
+
h = self.conv_in(z)
|
659 |
+
|
660 |
+
# middle
|
661 |
+
h = self.mid.block_1(h, temb)
|
662 |
+
h = self.mid.attn_1(h)
|
663 |
+
h = self.mid.block_2(h, temb)
|
664 |
+
|
665 |
+
# upsampling
|
666 |
+
for i_level in reversed(range(self.num_resolutions)):
|
667 |
+
for i_block in range(self.num_res_blocks + 1):
|
668 |
+
h = self.up[i_level].block[i_block](h, temb)
|
669 |
+
if len(self.up[i_level].attn) > 0:
|
670 |
+
h = self.up[i_level].attn[i_block](h)
|
671 |
+
if i_level != 0:
|
672 |
+
h = self.up[i_level].upsample(h)
|
673 |
+
|
674 |
+
# end
|
675 |
+
if self.give_pre_end:
|
676 |
+
return h
|
677 |
+
|
678 |
+
h = self.norm_out(h)
|
679 |
+
h = nonlinearity(h)
|
680 |
+
h = self.conv_out(h)
|
681 |
+
if self.tanh_out:
|
682 |
+
h = torch.tanh(h)
|
683 |
+
return h
|
684 |
+
|
685 |
+
|
686 |
+
class SimpleDecoder(nn.Module):
|
687 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
688 |
+
super().__init__()
|
689 |
+
self.model = nn.ModuleList(
|
690 |
+
[
|
691 |
+
nn.Conv2d(in_channels, in_channels, 1),
|
692 |
+
ResnetBlock(
|
693 |
+
in_channels=in_channels,
|
694 |
+
out_channels=2 * in_channels,
|
695 |
+
temb_channels=0,
|
696 |
+
dropout=0.0,
|
697 |
+
),
|
698 |
+
ResnetBlock(
|
699 |
+
in_channels=2 * in_channels,
|
700 |
+
out_channels=4 * in_channels,
|
701 |
+
temb_channels=0,
|
702 |
+
dropout=0.0,
|
703 |
+
),
|
704 |
+
ResnetBlock(
|
705 |
+
in_channels=4 * in_channels,
|
706 |
+
out_channels=2 * in_channels,
|
707 |
+
temb_channels=0,
|
708 |
+
dropout=0.0,
|
709 |
+
),
|
710 |
+
nn.Conv2d(2 * in_channels, in_channels, 1),
|
711 |
+
Upsample(in_channels, with_conv=True),
|
712 |
+
]
|
713 |
+
)
|
714 |
+
# end
|
715 |
+
self.norm_out = Normalize(in_channels)
|
716 |
+
self.conv_out = torch.nn.Conv2d(
|
717 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
718 |
+
)
|
719 |
+
|
720 |
+
def forward(self, x):
|
721 |
+
for i, layer in enumerate(self.model):
|
722 |
+
if i in [1, 2, 3]:
|
723 |
+
x = layer(x, None)
|
724 |
+
else:
|
725 |
+
x = layer(x)
|
726 |
+
|
727 |
+
h = self.norm_out(x)
|
728 |
+
h = nonlinearity(h)
|
729 |
+
x = self.conv_out(h)
|
730 |
+
return x
|
731 |
+
|
732 |
+
|
733 |
+
class UpsampleDecoder(nn.Module):
|
734 |
+
def __init__(
|
735 |
+
self,
|
736 |
+
in_channels,
|
737 |
+
out_channels,
|
738 |
+
ch,
|
739 |
+
num_res_blocks,
|
740 |
+
resolution,
|
741 |
+
ch_mult=(2, 2),
|
742 |
+
dropout=0.0,
|
743 |
+
):
|
744 |
+
super().__init__()
|
745 |
+
# upsampling
|
746 |
+
self.temb_ch = 0
|
747 |
+
self.num_resolutions = len(ch_mult)
|
748 |
+
self.num_res_blocks = num_res_blocks
|
749 |
+
block_in = in_channels
|
750 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
751 |
+
self.res_blocks = nn.ModuleList()
|
752 |
+
self.upsample_blocks = nn.ModuleList()
|
753 |
+
for i_level in range(self.num_resolutions):
|
754 |
+
res_block = []
|
755 |
+
block_out = ch * ch_mult[i_level]
|
756 |
+
for i_block in range(self.num_res_blocks + 1):
|
757 |
+
res_block.append(
|
758 |
+
ResnetBlock(
|
759 |
+
in_channels=block_in,
|
760 |
+
out_channels=block_out,
|
761 |
+
temb_channels=self.temb_ch,
|
762 |
+
dropout=dropout,
|
763 |
+
)
|
764 |
+
)
|
765 |
+
block_in = block_out
|
766 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
767 |
+
if i_level != self.num_resolutions - 1:
|
768 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
769 |
+
curr_res = curr_res * 2
|
770 |
+
|
771 |
+
# end
|
772 |
+
self.norm_out = Normalize(block_in)
|
773 |
+
self.conv_out = torch.nn.Conv2d(
|
774 |
+
block_in, out_channels, kernel_size=3, stride=1, padding=1
|
775 |
+
)
|
776 |
+
|
777 |
+
def forward(self, x):
|
778 |
+
# upsampling
|
779 |
+
h = x
|
780 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
781 |
+
for i_block in range(self.num_res_blocks + 1):
|
782 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
783 |
+
if i_level != self.num_resolutions - 1:
|
784 |
+
h = self.upsample_blocks[k](h)
|
785 |
+
h = self.norm_out(h)
|
786 |
+
h = nonlinearity(h)
|
787 |
+
h = self.conv_out(h)
|
788 |
+
return h
|
789 |
+
|
790 |
+
|
791 |
+
class LatentRescaler(nn.Module):
|
792 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
793 |
+
super().__init__()
|
794 |
+
# residual block, interpolate, residual block
|
795 |
+
self.factor = factor
|
796 |
+
self.conv_in = nn.Conv2d(
|
797 |
+
in_channels, mid_channels, kernel_size=3, stride=1, padding=1
|
798 |
+
)
|
799 |
+
self.res_block1 = nn.ModuleList(
|
800 |
+
[
|
801 |
+
ResnetBlock(
|
802 |
+
in_channels=mid_channels,
|
803 |
+
out_channels=mid_channels,
|
804 |
+
temb_channels=0,
|
805 |
+
dropout=0.0,
|
806 |
+
)
|
807 |
+
for _ in range(depth)
|
808 |
+
]
|
809 |
+
)
|
810 |
+
self.attn = AttnBlock(mid_channels)
|
811 |
+
self.res_block2 = nn.ModuleList(
|
812 |
+
[
|
813 |
+
ResnetBlock(
|
814 |
+
in_channels=mid_channels,
|
815 |
+
out_channels=mid_channels,
|
816 |
+
temb_channels=0,
|
817 |
+
dropout=0.0,
|
818 |
+
)
|
819 |
+
for _ in range(depth)
|
820 |
+
]
|
821 |
+
)
|
822 |
+
|
823 |
+
self.conv_out = nn.Conv2d(
|
824 |
+
mid_channels,
|
825 |
+
out_channels,
|
826 |
+
kernel_size=1,
|
827 |
+
)
|
828 |
+
|
829 |
+
def forward(self, x):
|
830 |
+
x = self.conv_in(x)
|
831 |
+
for block in self.res_block1:
|
832 |
+
x = block(x, None)
|
833 |
+
x = torch.nn.functional.interpolate(
|
834 |
+
x,
|
835 |
+
size=(
|
836 |
+
int(round(x.shape[2] * self.factor)),
|
837 |
+
int(round(x.shape[3] * self.factor)),
|
838 |
+
),
|
839 |
+
)
|
840 |
+
x = self.attn(x).contiguous()
|
841 |
+
for block in self.res_block2:
|
842 |
+
x = block(x, None)
|
843 |
+
x = self.conv_out(x)
|
844 |
+
return x
|
845 |
+
|
846 |
+
|
847 |
+
class MergedRescaleEncoder(nn.Module):
|
848 |
+
def __init__(
|
849 |
+
self,
|
850 |
+
in_channels,
|
851 |
+
ch,
|
852 |
+
resolution,
|
853 |
+
out_ch,
|
854 |
+
num_res_blocks,
|
855 |
+
attn_resolutions,
|
856 |
+
dropout=0.0,
|
857 |
+
resamp_with_conv=True,
|
858 |
+
ch_mult=(1, 2, 4, 8),
|
859 |
+
rescale_factor=1.0,
|
860 |
+
rescale_module_depth=1,
|
861 |
+
):
|
862 |
+
super().__init__()
|
863 |
+
intermediate_chn = ch * ch_mult[-1]
|
864 |
+
self.encoder = Encoder(
|
865 |
+
in_channels=in_channels,
|
866 |
+
num_res_blocks=num_res_blocks,
|
867 |
+
ch=ch,
|
868 |
+
ch_mult=ch_mult,
|
869 |
+
z_channels=intermediate_chn,
|
870 |
+
double_z=False,
|
871 |
+
resolution=resolution,
|
872 |
+
attn_resolutions=attn_resolutions,
|
873 |
+
dropout=dropout,
|
874 |
+
resamp_with_conv=resamp_with_conv,
|
875 |
+
out_ch=None,
|
876 |
+
)
|
877 |
+
self.rescaler = LatentRescaler(
|
878 |
+
factor=rescale_factor,
|
879 |
+
in_channels=intermediate_chn,
|
880 |
+
mid_channels=intermediate_chn,
|
881 |
+
out_channels=out_ch,
|
882 |
+
depth=rescale_module_depth,
|
883 |
+
)
|
884 |
+
|
885 |
+
def forward(self, x):
|
886 |
+
x = self.encoder(x)
|
887 |
+
x = self.rescaler(x)
|
888 |
+
return x
|
889 |
+
|
890 |
+
|
891 |
+
class MergedRescaleDecoder(nn.Module):
|
892 |
+
def __init__(
|
893 |
+
self,
|
894 |
+
z_channels,
|
895 |
+
out_ch,
|
896 |
+
resolution,
|
897 |
+
num_res_blocks,
|
898 |
+
attn_resolutions,
|
899 |
+
ch,
|
900 |
+
ch_mult=(1, 2, 4, 8),
|
901 |
+
dropout=0.0,
|
902 |
+
resamp_with_conv=True,
|
903 |
+
rescale_factor=1.0,
|
904 |
+
rescale_module_depth=1,
|
905 |
+
):
|
906 |
+
super().__init__()
|
907 |
+
tmp_chn = z_channels * ch_mult[-1]
|
908 |
+
self.decoder = Decoder(
|
909 |
+
out_ch=out_ch,
|
910 |
+
z_channels=tmp_chn,
|
911 |
+
attn_resolutions=attn_resolutions,
|
912 |
+
dropout=dropout,
|
913 |
+
resamp_with_conv=resamp_with_conv,
|
914 |
+
in_channels=None,
|
915 |
+
num_res_blocks=num_res_blocks,
|
916 |
+
ch_mult=ch_mult,
|
917 |
+
resolution=resolution,
|
918 |
+
ch=ch,
|
919 |
+
)
|
920 |
+
self.rescaler = LatentRescaler(
|
921 |
+
factor=rescale_factor,
|
922 |
+
in_channels=z_channels,
|
923 |
+
mid_channels=tmp_chn,
|
924 |
+
out_channels=tmp_chn,
|
925 |
+
depth=rescale_module_depth,
|
926 |
+
)
|
927 |
+
|
928 |
+
def forward(self, x):
|
929 |
+
x = self.rescaler(x)
|
930 |
+
x = self.decoder(x)
|
931 |
+
return x
|
932 |
+
|
933 |
+
|
934 |
+
class Upsampler(nn.Module):
|
935 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
936 |
+
super().__init__()
|
937 |
+
assert out_size >= in_size
|
938 |
+
num_blocks = int(np.log2(out_size // in_size)) + 1
|
939 |
+
factor_up = 1.0 + (out_size % in_size)
|
940 |
+
print(
|
941 |
+
f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}"
|
942 |
+
)
|
943 |
+
self.rescaler = LatentRescaler(
|
944 |
+
factor=factor_up,
|
945 |
+
in_channels=in_channels,
|
946 |
+
mid_channels=2 * in_channels,
|
947 |
+
out_channels=in_channels,
|
948 |
+
)
|
949 |
+
self.decoder = Decoder(
|
950 |
+
out_ch=out_channels,
|
951 |
+
resolution=out_size,
|
952 |
+
z_channels=in_channels,
|
953 |
+
num_res_blocks=2,
|
954 |
+
attn_resolutions=[],
|
955 |
+
in_channels=None,
|
956 |
+
ch=in_channels,
|
957 |
+
ch_mult=[ch_mult for _ in range(num_blocks)],
|
958 |
+
)
|
959 |
+
|
960 |
+
def forward(self, x):
|
961 |
+
x = self.rescaler(x)
|
962 |
+
x = self.decoder(x)
|
963 |
+
return x
|
964 |
+
|
965 |
+
|
966 |
+
class Resize(nn.Module):
|
967 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
968 |
+
super().__init__()
|
969 |
+
self.with_conv = learned
|
970 |
+
self.mode = mode
|
971 |
+
if self.with_conv:
|
972 |
+
print(
|
973 |
+
f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode"
|
974 |
+
)
|
975 |
+
raise NotImplementedError()
|
976 |
+
assert in_channels is not None
|
977 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
978 |
+
self.conv = torch.nn.Conv2d(
|
979 |
+
in_channels, in_channels, kernel_size=4, stride=2, padding=1
|
980 |
+
)
|
981 |
+
|
982 |
+
def forward(self, x, scale_factor=1.0):
|
983 |
+
if scale_factor == 1.0:
|
984 |
+
return x
|
985 |
+
else:
|
986 |
+
x = torch.nn.functional.interpolate(
|
987 |
+
x, mode=self.mode, align_corners=False, scale_factor=scale_factor
|
988 |
+
)
|
989 |
+
return x
|
990 |
+
|
991 |
+
|
992 |
+
class FirstStagePostProcessor(nn.Module):
|
993 |
+
def __init__(
|
994 |
+
self,
|
995 |
+
ch_mult: list,
|
996 |
+
in_channels,
|
997 |
+
pretrained_model: nn.Module = None,
|
998 |
+
reshape=False,
|
999 |
+
n_channels=None,
|
1000 |
+
dropout=0.0,
|
1001 |
+
pretrained_config=None,
|
1002 |
+
):
|
1003 |
+
super().__init__()
|
1004 |
+
if pretrained_config is None:
|
1005 |
+
assert (
|
1006 |
+
pretrained_model is not None
|
1007 |
+
), 'Either "pretrained_model" or "pretrained_config" must not be None'
|
1008 |
+
self.pretrained_model = pretrained_model
|
1009 |
+
else:
|
1010 |
+
assert (
|
1011 |
+
pretrained_config is not None
|
1012 |
+
), 'Either "pretrained_model" or "pretrained_config" must not be None'
|
1013 |
+
self.instantiate_pretrained(pretrained_config)
|
1014 |
+
|
1015 |
+
self.do_reshape = reshape
|
1016 |
+
|
1017 |
+
if n_channels is None:
|
1018 |
+
n_channels = self.pretrained_model.encoder.ch
|
1019 |
+
|
1020 |
+
self.proj_norm = Normalize(in_channels, num_groups=in_channels // 2)
|
1021 |
+
self.proj = nn.Conv2d(
|
1022 |
+
in_channels, n_channels, kernel_size=3, stride=1, padding=1
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
blocks = []
|
1026 |
+
downs = []
|
1027 |
+
ch_in = n_channels
|
1028 |
+
for m in ch_mult:
|
1029 |
+
blocks.append(
|
1030 |
+
ResnetBlock(
|
1031 |
+
in_channels=ch_in, out_channels=m * n_channels, dropout=dropout
|
1032 |
+
)
|
1033 |
+
)
|
1034 |
+
ch_in = m * n_channels
|
1035 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
1036 |
+
|
1037 |
+
self.model = nn.ModuleList(blocks)
|
1038 |
+
self.downsampler = nn.ModuleList(downs)
|
1039 |
+
|
1040 |
+
def instantiate_pretrained(self, config):
|
1041 |
+
model = instantiate_from_config(config)
|
1042 |
+
self.pretrained_model = model.eval()
|
1043 |
+
# self.pretrained_model.train = False
|
1044 |
+
for param in self.pretrained_model.parameters():
|
1045 |
+
param.requires_grad = False
|
1046 |
+
|
1047 |
+
@torch.no_grad()
|
1048 |
+
def encode_with_pretrained(self, x):
|
1049 |
+
c = self.pretrained_model.encode(x)
|
1050 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
1051 |
+
c = c.mode()
|
1052 |
+
return c
|
1053 |
+
|
1054 |
+
def forward(self, x):
|
1055 |
+
z_fs = self.encode_with_pretrained(x)
|
1056 |
+
z = self.proj_norm(z_fs)
|
1057 |
+
z = self.proj(z)
|
1058 |
+
z = nonlinearity(z)
|
1059 |
+
|
1060 |
+
for submodel, downmodel in zip(self.model, self.downsampler):
|
1061 |
+
z = submodel(z, temb=None)
|
1062 |
+
z = downmodel(z)
|
1063 |
+
|
1064 |
+
if self.do_reshape:
|
1065 |
+
z = rearrange(z, "b c h w -> b (h w) c")
|
1066 |
+
return z
|
diffusers/CITATION.cff
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cff-version: 1.2.0
|
2 |
+
title: 'Diffusers: State-of-the-art diffusion models'
|
3 |
+
message: >-
|
4 |
+
If you use this software, please cite it using the
|
5 |
+
metadata from this file.
|
6 |
+
type: software
|
7 |
+
authors:
|
8 |
+
- given-names: Patrick
|
9 |
+
family-names: von Platen
|
10 |
+
- given-names: Suraj
|
11 |
+
family-names: Patil
|
12 |
+
- given-names: Anton
|
13 |
+
family-names: Lozhkov
|
14 |
+
- given-names: Pedro
|
15 |
+
family-names: Cuenca
|
16 |
+
- given-names: Nathan
|
17 |
+
family-names: Lambert
|
18 |
+
- given-names: Kashif
|
19 |
+
family-names: Rasul
|
20 |
+
- given-names: Mishig
|
21 |
+
family-names: Davaadorj
|
22 |
+
- given-names: Thomas
|
23 |
+
family-names: Wolf
|
24 |
+
repository-code: 'https://github.com/huggingface/diffusers'
|
25 |
+
abstract: >-
|
26 |
+
Diffusers provides pretrained diffusion models across
|
27 |
+
multiple modalities, such as vision and audio, and serves
|
28 |
+
as a modular toolbox for inference and training of
|
29 |
+
diffusion models.
|
30 |
+
keywords:
|
31 |
+
- deep-learning
|
32 |
+
- pytorch
|
33 |
+
- image-generation
|
34 |
+
- diffusion
|
35 |
+
- text2image
|
36 |
+
- image2image
|
37 |
+
- score-based-generative-modeling
|
38 |
+
- stable-diffusion
|
39 |
+
license: Apache-2.0
|
40 |
+
version: 0.12.1
|
diffusers/CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Contributor Covenant Code of Conduct
|
3 |
+
|
4 |
+
## Our Pledge
|
5 |
+
|
6 |
+
We as members, contributors, and leaders pledge to make participation in our
|
7 |
+
community a harassment-free experience for everyone, regardless of age, body
|
8 |
+
size, visible or invisible disability, ethnicity, sex characteristics, gender
|
9 |
+
identity and expression, level of experience, education, socio-economic status,
|
10 |
+
nationality, personal appearance, race, religion, or sexual identity
|
11 |
+
and orientation.
|
12 |
+
|
13 |
+
We pledge to act and interact in ways that contribute to an open, welcoming,
|
14 |
+
diverse, inclusive, and healthy community.
|
15 |
+
|
16 |
+
## Our Standards
|
17 |
+
|
18 |
+
Examples of behavior that contributes to a positive environment for our
|
19 |
+
community include:
|
20 |
+
|
21 |
+
* Demonstrating empathy and kindness toward other people
|
22 |
+
* Being respectful of differing opinions, viewpoints, and experiences
|
23 |
+
* Giving and gracefully accepting constructive feedback
|
24 |
+
* Accepting responsibility and apologizing to those affected by our mistakes,
|
25 |
+
and learning from the experience
|
26 |
+
* Focusing on what is best not just for us as individuals, but for the
|
27 |
+
overall diffusers community
|
28 |
+
|
29 |
+
Examples of unacceptable behavior include:
|
30 |
+
|
31 |
+
* The use of sexualized language or imagery, and sexual attention or
|
32 |
+
advances of any kind
|
33 |
+
* Trolling, insulting or derogatory comments, and personal or political attacks
|
34 |
+
* Public or private harassment
|
35 |
+
* Publishing others' private information, such as a physical or email
|
36 |
+
address, without their explicit permission
|
37 |
+
* Spamming issues or PRs with links to projects unrelated to this library
|
38 |
+
* Other conduct which could reasonably be considered inappropriate in a
|
39 |
+
professional setting
|
40 |
+
|
41 |
+
## Enforcement Responsibilities
|
42 |
+
|
43 |
+
Community leaders are responsible for clarifying and enforcing our standards of
|
44 |
+
acceptable behavior and will take appropriate and fair corrective action in
|
45 |
+
response to any behavior that they deem inappropriate, threatening, offensive,
|
46 |
+
or harmful.
|
47 |
+
|
48 |
+
Community leaders have the right and responsibility to remove, edit, or reject
|
49 |
+
comments, commits, code, wiki edits, issues, and other contributions that are
|
50 |
+
not aligned to this Code of Conduct, and will communicate reasons for moderation
|
51 |
+
decisions when appropriate.
|
52 |
+
|
53 |
+
## Scope
|
54 |
+
|
55 |
+
This Code of Conduct applies within all community spaces, and also applies when
|
56 |
+
an individual is officially representing the community in public spaces.
|
57 |
+
Examples of representing our community include using an official e-mail address,
|
58 |
+
posting via an official social media account, or acting as an appointed
|
59 |
+
representative at an online or offline event.
|
60 |
+
|
61 |
+
## Enforcement
|
62 |
+
|
63 |
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
64 |
+
reported to the community leaders responsible for enforcement at
|
65 | |
66 |
+
All complaints will be reviewed and investigated promptly and fairly.
|
67 |
+
|
68 |
+
All community leaders are obligated to respect the privacy and security of the
|
69 |
+
reporter of any incident.
|
70 |
+
|
71 |
+
## Enforcement Guidelines
|
72 |
+
|
73 |
+
Community leaders will follow these Community Impact Guidelines in determining
|
74 |
+
the consequences for any action they deem in violation of this Code of Conduct:
|
75 |
+
|
76 |
+
### 1. Correction
|
77 |
+
|
78 |
+
**Community Impact**: Use of inappropriate language or other behavior deemed
|
79 |
+
unprofessional or unwelcome in the community.
|
80 |
+
|
81 |
+
**Consequence**: A private, written warning from community leaders, providing
|
82 |
+
clarity around the nature of the violation and an explanation of why the
|
83 |
+
behavior was inappropriate. A public apology may be requested.
|
84 |
+
|
85 |
+
### 2. Warning
|
86 |
+
|
87 |
+
**Community Impact**: A violation through a single incident or series
|
88 |
+
of actions.
|
89 |
+
|
90 |
+
**Consequence**: A warning with consequences for continued behavior. No
|
91 |
+
interaction with the people involved, including unsolicited interaction with
|
92 |
+
those enforcing the Code of Conduct, for a specified period of time. This
|
93 |
+
includes avoiding interactions in community spaces as well as external channels
|
94 |
+
like social media. Violating these terms may lead to a temporary or
|
95 |
+
permanent ban.
|
96 |
+
|
97 |
+
### 3. Temporary Ban
|
98 |
+
|
99 |
+
**Community Impact**: A serious violation of community standards, including
|
100 |
+
sustained inappropriate behavior.
|
101 |
+
|
102 |
+
**Consequence**: A temporary ban from any sort of interaction or public
|
103 |
+
communication with the community for a specified period of time. No public or
|
104 |
+
private interaction with the people involved, including unsolicited interaction
|
105 |
+
with those enforcing the Code of Conduct, is allowed during this period.
|
106 |
+
Violating these terms may lead to a permanent ban.
|
107 |
+
|
108 |
+
### 4. Permanent Ban
|
109 |
+
|
110 |
+
**Community Impact**: Demonstrating a pattern of violation of community
|
111 |
+
standards, including sustained inappropriate behavior, harassment of an
|
112 |
+
individual, or aggression toward or disparagement of classes of individuals.
|
113 |
+
|
114 |
+
**Consequence**: A permanent ban from any sort of public interaction within
|
115 |
+
the community.
|
116 |
+
|
117 |
+
## Attribution
|
118 |
+
|
119 |
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
120 |
+
version 2.0, available at
|
121 |
+
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
|
122 |
+
|
123 |
+
Community Impact Guidelines were inspired by [Mozilla's code of conduct
|
124 |
+
enforcement ladder](https://github.com/mozilla/diversity).
|
125 |
+
|
126 |
+
[homepage]: https://www.contributor-covenant.org
|
127 |
+
|
128 |
+
For answers to common questions about this code of conduct, see the FAQ at
|
129 |
+
https://www.contributor-covenant.org/faq. Translations are available at
|
130 |
+
https://www.contributor-covenant.org/translations.
|