import os import tempfile import numpy as np from norfair import AbsolutePaths, Paths, Tracker, Video from norfair.camera_motion import HomographyTransformationGetter, MotionEstimator from custom_models import YOLO, yolo_detections_to_norfair_detections from demo_utils.configuration import ( DISTANCE_THRESHOLD_BBOX, DISTANCE_THRESHOLD_CENTROID, models_path, style, ) from demo_utils.distance_function import euclidean_distance, iou from demo_utils.draw import center, draw def inference( input_video: str, model: str, features: str, track_points: str, model_threshold: str, ): # temp_dir = tempfile.TemporaryDirectory() # output_path = temp_dir.name coord_transformations = None paths_drawer = None fix_paths = False track_points = style[track_points] model = YOLO(models_path[model]) video = Video(input_path=input_video) motion_estimation = len(features) > 0 and ( features[0] == 0 or (len(features) > 1 and features[1] == 0) ) drawing_paths = len(features) > 0 and ( features[0] == 1 or (len(features) > 1 and features[1] == 1) ) if motion_estimation and drawing_paths: fix_paths = True if motion_estimation: transformations_getter = HomographyTransformationGetter() motion_estimator = MotionEstimator( max_points=500, min_distance=7, transformations_getter=transformations_getter ) distance_function = iou if track_points == "bbox" else euclidean_distance distance_threshold = ( DISTANCE_THRESHOLD_BBOX if track_points == "bbox" else DISTANCE_THRESHOLD_CENTROID ) tracker = Tracker( distance_function=distance_function, distance_threshold=distance_threshold, ) if drawing_paths: paths_drawer = Paths(center, attenuation=0.01) if fix_paths: paths_drawer = AbsolutePaths(max_history=5, thickness=2) for frame in video: yolo_detections = model( frame, conf_threshold=model_threshold, iou_threshold=0.45, image_size=720 ) mask = np.ones(frame.shape[:2], frame.dtype) if motion_estimation: coord_transformations = motion_estimator.update(frame, mask) detections = yolo_detections_to_norfair_detections( yolo_detections, track_points=track_points ) tracked_objects = tracker.update( detections=detections, coord_transformations=coord_transformations ) frame = draw( paths_drawer, track_points, frame, detections, tracked_objects, coord_transformations, fix_paths, ) video.write(frame) base_file_name = input_video.split("/")[-1].split(".")[0] file_name = base_file_name + "_out.mp4" # return os.path.join(output_path, file_name) return file_name