from transformers import AutoTokenizer import time import gradio as gr from optimum.onnxruntime import ORTModelForSeq2SeqLM from optimum.utils import NormalizedConfigManager @classmethod def _new_get_normalized_config_class(cls, model_type): return cls._conf["t5"] NormalizedConfigManager.get_normalized_config_class = _new_get_normalized_config_class N = 2 # Number of previous QA pairs to use for context MAX_NEW_TOKENS = 128 # Maximum number of tokens for each answer tokenizer = AutoTokenizer.from_pretrained("tryolabs/long-t5-tglobal-base-blogpost-cqa-onnx") model = ORTModelForSeq2SeqLM.from_pretrained("tryolabs/long-t5-tglobal-base-blogpost-cqa-onnx") with open("context_short.txt", "r") as f: context = f.read() def build_input(question, state=[[],[]]): model_input = f"{context} || " previous = min(len(state[1][1:]), N) for i in range(previous, 0, -1): prev_question = state[0][-i-1] prev_answer = state[1][-i] model_input += f" {prev_question} {prev_answer} " model_input += f" {question} " return model_input def get_model_answer(question, state=[[],[]]): start = time.perf_counter() model_input = build_input(question, state) end = time.perf_counter() print(f"Build input: {end-start}") start = time.perf_counter() encoded_inputs = tokenizer(model_input, max_length=3000, truncation=True, return_tensors="pt") input_ids, attention_mask = ( encoded_inputs.input_ids, encoded_inputs.attention_mask ) end = time.perf_counter() print(f"Tokenize: {end-start}") start = time.perf_counter() encoded_output = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=MAX_NEW_TOKENS) answer = tokenizer.decode(encoded_output[0], skip_special_tokens=True) end = time.perf_counter() print(f"Generate: {end-start}") state[0].append(question) state[1].append(answer) responses = [(state[0][i], state[1][i]) for i in range(len(state[0]))] return responses, state with gr.Blocks() as demo: state = gr.State([[],[]]) chatbot = gr.Chatbot() text = gr.Textbox(label="Ask a question (press enter to submit)", default_value="How are you?") text.submit(get_model_answer, [text, state], [chatbot, state]) text.submit(lambda x: "", text, text) demo.launch()