Spaces:
Sleeping
Sleeping
truthdotphd
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,10 @@ repo_id = "truthdotphd/vessel-detection"
|
|
8 |
model_path = hf_hub_download(repo_id=repo_id, filename="model.pt")
|
9 |
model = YOLO(model_path)
|
10 |
|
11 |
-
def detect_vessels(image):
|
12 |
-
# Run inference
|
13 |
-
results = model(image)
|
14 |
-
|
15 |
# Plot results
|
16 |
annotated_image = results[0].plot()
|
17 |
return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
@@ -19,13 +19,17 @@ def detect_vessels(image):
|
|
19 |
# Create Gradio interface
|
20 |
demo = gr.Interface(
|
21 |
fn=detect_vessels,
|
22 |
-
inputs=
|
|
|
|
|
|
|
|
|
23 |
outputs=gr.Image(),
|
24 |
title="Maritime Vessel Detection",
|
25 |
-
description="Upload an image to detect vessels",
|
26 |
-
examples=[["vessels.jpg"]],
|
27 |
theme=gr.themes.Soft()
|
28 |
)
|
29 |
|
30 |
# Launch the app
|
31 |
-
demo.launch()
|
|
|
8 |
model_path = hf_hub_download(repo_id=repo_id, filename="model.pt")
|
9 |
model = YOLO(model_path)
|
10 |
|
11 |
+
def detect_vessels(image, conf_threshold, iou_threshold):
|
12 |
+
# Run inference with custom thresholds
|
13 |
+
results = model(image, conf=conf_threshold, iou=iou_threshold)
|
14 |
+
|
15 |
# Plot results
|
16 |
annotated_image = results[0].plot()
|
17 |
return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
|
|
19 |
# Create Gradio interface
|
20 |
demo = gr.Interface(
|
21 |
fn=detect_vessels,
|
22 |
+
inputs=[
|
23 |
+
gr.Image(type="numpy"),
|
24 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"),
|
25 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="IoU Threshold")
|
26 |
+
],
|
27 |
outputs=gr.Image(),
|
28 |
title="Maritime Vessel Detection",
|
29 |
+
description="Upload an image to detect vessels. Adjust confidence and IoU thresholds to filter detections.",
|
30 |
+
examples=[["vessels.jpg", 0.25, 0.7]],
|
31 |
theme=gr.themes.Soft()
|
32 |
)
|
33 |
|
34 |
# Launch the app
|
35 |
+
demo.launch()
|