Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch Blip model. """ | |
import unittest | |
import numpy as np | |
from transformers import BlipTextConfig | |
from transformers.testing_utils import require_torch, slow, torch_device | |
from transformers.utils import is_torch_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
if is_torch_available(): | |
import torch | |
from transformers import BlipTextModel | |
from transformers.models.blip.modeling_blip import BLIP_PRETRAINED_MODEL_ARCHIVE_LIST | |
class BlipTextModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
projection_dim=32, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
max_position_embeddings=512, | |
initializer_range=0.02, | |
bos_token_id=0, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.scope = scope | |
self.bos_token_id = bos_token_id | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
if input_mask is not None: | |
batch_size, seq_length = input_mask.shape | |
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) | |
for batch_idx, start_index in enumerate(rnd_start_indices): | |
input_mask[batch_idx, :start_index] = 1 | |
input_mask[batch_idx, start_index:] = 0 | |
config = self.get_config() | |
return config, input_ids, input_mask | |
def get_config(self): | |
return BlipTextConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
projection_dim=self.projection_dim, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
bos_token_id=self.bos_token_id, | |
) | |
def create_and_check_model(self, config, input_ids, input_mask): | |
model = BlipTextModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(input_ids, attention_mask=input_mask) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, input_mask = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class BlipTextModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (BlipTextModel,) if is_torch_available() else () | |
fx_compatible = False | |
test_pruning = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = BlipTextModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=BlipTextConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
def test_inputs_embeds(self): | |
pass | |
def test_save_load_fast_init_from_base(self): | |
pass | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = BlipTextModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_pt_tf_model_equivalence(self): | |
super().test_pt_tf_model_equivalence(allow_missing_keys=True) | |