treadknot commited on
Commit
09bd5d6
·
verified ·
1 Parent(s): b41c1b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -1
app.py CHANGED
@@ -1,3 +1,49 @@
1
  import gradio as gr
 
 
 
 
 
2
 
3
- gr.load("models/dima806/closed_eyes_image_detection").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from PIL import Image
3
+ import numpy as np
4
+ import cv2
5
+ import os
6
+ import random
7
 
8
+ # Assuming overlay_image function is defined elsewhere in your code as provided previously
9
+
10
+ def process_image_with_model(image_path):
11
+ # Load the Gradio model for closed eyes detection
12
+ model = gr.load("models/dima806/closed_eyes_image_detection")
13
+
14
+ # Load the user input image
15
+ image = Image.open(image_path)
16
+ image = image.rotate(-90, expand=True)
17
+ image_array = np.array(image)
18
+
19
+ # Predict using the Gradio model (adjust according to the model's input and output format)
20
+ predictions = model(image_array)
21
+
22
+ # Placeholder loop for overlaying images on detected regions (adjust based on actual predictions format)
23
+ for bbox in predictions:
24
+ x, y, w, h = bbox
25
+ random_eye_image_path = os.path.join("result", random.choice(os.listdir("result")))
26
+ random_eye_image = cv2.imread(random_eye_image_path, cv2.IMREAD_UNCHANGED) # Load with alpha channel if present
27
+
28
+ if random_eye_image is None:
29
+ print(f"Failed to load image from {random_eye_image_path}")
30
+ continue
31
+
32
+ # Overlay the image and update image_array with the result
33
+ image_array = overlay_image(image_array, random_eye_image, x, y, w, h, alpha=0.50)
34
+
35
+ return Image.fromarray(image_array)
36
+
37
+ def gr_interface(image):
38
+ processed_image = process_image_with_model(image)
39
+ return processed_image
40
+
41
+ # Setup the Gradio interface
42
+ demo = gr.Interface(fn=gr_interface,
43
+ inputs=gr.Image(type="filepath", label="Upload Image"),
44
+ outputs="image",
45
+ title="Closed Eyes Image Detection",
46
+ description="Upload an image and the model will detect closed eyes.")
47
+
48
+ if __name__ == "__main__":
49
+ demo.launch()