import pandas as pd import requests import isort import black import flair import time from bs4 import BeautifulSoup import re import numpy as np from flair.data import Sentence from flair.models import SequenceTagger from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline import string URL = "https://www.formula1.com/content/fom-website/en/latest/all.xml" def get_xml(url): # xpath is only for formula1 # use urllib.parse to check for formula1.com website or other news xml = pd.read_xml(url,xpath='channel/item') # care taken to only consider results where there are more words not a single word quotes def extract_quote(string): # Use the re.findall function to extract the quoted text results = re.findall(r'[“\"](.*?)[”\"]', string) quotes = [] for result in results: split_result = result.split() if len(split_result) >3: quotes.append(result) return quotes def get_names(text): # # load the NER tagger tagger = SequenceTagger.load('ner') sentence = Sentence(text) tagger.predict(sentence) names = [] for label in sentence.get_labels('ner'): if label.value == "PER": names.append(f"{label.data_point.text}") # convert to a set to remove some of the repetitions names = list(set(names)) return names def get_text(new_articles_df): """ quotes outputs a list of quotes """ dfs_dict = {} for article in tqdm(new_articles_df.iterrows()): link = article[1]["guid"] request = requests.get(link) soup = BeautifulSoup(request.content, "html.parser") # class_ below will be different for different websites s = soup.find("div", class_="col-lg-8 col-xl-7 offset-xl-1 f1-article--content") lines = s.find_all("p") text_content = pd.DataFrame(data={"text": []}) for i, line in enumerate(lines): df = pd.DataFrame(data={"text": [line.text]}) text_content = pd.concat([text_content, df], ignore_index=True) strongs = s.find_all("strong") strong_content = pd.DataFrame(data={"text": []}) for i, strong in enumerate(strongs): if i > 0: df = pd.DataFrame(data={"text": [strong.text]}) strong_content = pd.concat([strong_content, df], ignore_index=True) # df has content df = text_content[~text_content["text"].isin(strong_content["text"])].reset_index( drop=True ) # df["quote"] = df["text"].apply(lambda row: extract_quote(row)) # # combine all rows into context context = "" for i,row in df.iterrows(): context += f" {row['text']}" quotes = extract_quote(context) # to save some time not computing unnecessary NER if len(quotes) != 0: speakers = get_names(context) else: speakers = () dfs_dict[link] = {'context':context, 'quotes':quotes, 'speakers':speakers} return dfs_dict def load_speaker_model(): model_name = f"deepset/xlm-roberta-large-squad2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) question_answerer = pipeline("question-answering", model=model, tokenizer=tokenizer) return question_answerer def remove_punctuations(text): modified_text = "".join([character for character in text if character not in string.punctuation]) modified_text = modified_text.lstrip(" ") modified_text = modified_text.rstrip(" ") return modified_text def check_updates(every=300): while True: time.sleep(every) latest_xml = get_xml() if ~previous_xml.equals(latest_xml): print('New articles found') new_articles_df = latest_xml[~latest_xml["guid"].isin(previous_xml["guid"])] # loops through new articles and gets the necessary text, quotes and speakers dfs_dict = get_text(new_articles_df) else: print('No New article is found')