File size: 6,498 Bytes
b5ce381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import torch
import torch.nn as nn
from einops import rearrange
from diffusers import (
    AutoencoderKL,
    AutoencoderKLTemporalDecoder,
    StableDiffusionPipeline,
)


def default(value, default_value):
    return default_value if value is None else value


def load_stable_model(model_path):
    vae_model = StableDiffusionPipeline.from_pretrained(model_path)
    vae_model.set_use_memory_efficient_attention_xformers(True)
    return vae_model.vae


def process_image(image: torch.Tensor, resolution=None) -> torch.Tensor:
    """
    Process image tensor by resizing and normalizing.

    Args:
        image: Input image tensor
        resolution: Target resolution for resizing

    Returns:
        Processed image tensor
    """
    if resolution is not None:
        image = torch.nn.functional.interpolate(
            image.float(), size=resolution, mode="bilinear", align_corners=False
        )
    return image / 127.5 - 1.0


def encode_video_chunk(
    model,
    video,
    target_resolution,
) -> torch.Tensor:
    """
    Encode a chunk of video frames into latent space.

    Args:
        model: VAE model for encoding
        video: Video tensor to encode
        target_resolution: Target resolution for processing

    Returns:
        Encoded latent tensor
    """
    video = rearrange(video, "t h w c -> c t h w")
    vid_rez = min(video.shape[-1], video.shape[-2])
    to_rez = default(target_resolution, vid_rez)
    video = process_image(video, to_rez)

    encoded = model.encode_video(video.cuda().unsqueeze(0)).squeeze(0)
    return rearrange(encoded, "c t h w -> t c h w")


class VaeWrapper(nn.Module):
    def __init__(self, latent_type, max_chunk_decode=16, variant="fp16"):
        super().__init__()
        self.vae_model = self.get_vae(latent_type, variant)
        # self.latent_scale = latent_scale
        self.latent_type = latent_type
        self.max_chunk_decode = max_chunk_decode

    def get_vae(self, latent_type, variant="fp16"):
        if latent_type == "stable":
            vae_model = load_stable_model("stabilityai/stable-diffusion-x4-upscaler")
            vae_model.enable_slicing()
            vae_model.set_use_memory_efficient_attention_xformers(True)
            self.down_factor = 4
        elif latent_type == "video":
            vae_model = AutoencoderKLTemporalDecoder.from_pretrained(
                "stabilityai/stable-video-diffusion-img2vid",
                subfolder="vae",
                torch_dtype=torch.float16 if variant == "fp16" else torch.float32,
                variant="fp16" if variant == "fp16" else None,
            )
            vae_model.set_use_memory_efficient_attention_xformers(True)
            self.down_factor = 8
        elif latent_type == "refiner":
            vae_model = AutoencoderKL.from_pretrained(
                "stabilityai/stable-diffusion-xl-refiner-1.0",
                subfolder="vae",
                revision=None,
            )
            vae_model.enable_slicing()
            vae_model.set_use_memory_efficient_attention_xformers(True)
            self.down_factor = 8

        vae_model.eval()
        vae_model.requires_grad_(False)
        vae_model.cuda()

        vae_model = torch.compile(vae_model)
        return vae_model

    # def accelerate_model(self, example_shape):
    #     self.vae_model = torch.jit.trace(self.vae_model, torch.randn(example_shape).cuda())
    #     self.vae_model = torch.compile(self.vae_model)
    #     self.is_accelerated = True
    def disable_slicing(self):
        self.vae_model.disable_slicing()

    @torch.no_grad()
    def encode_video(self, video):
        """
        video: (B, C, T, H, W)
        """
        is_video = False
        if len(video.shape) == 5:
            is_video = True
            T = video.shape[2]
            video = rearrange(video, "b c t h w -> (b t) c h w")
        or_dtype = video.dtype
        # if not self.is_accelerated:
        #     self.accelerate_model(video.shape)
        if self.latent_type in ["stable", "refiner", "video"]:
            encoded_video = (
                self.vae_model.encode(video.to(dtype=self.vae_model.dtype))
                .latent_dist.sample()
                .to(dtype=or_dtype)
                * self.vae_model.config.scaling_factor
            )
        elif self.latent_type == "ldm":
            encoded_video = self.vae_model.encode_first_stage(video) * 0.18215
        if not is_video:
            return encoded_video
        return rearrange(encoded_video, "(b t) c h w -> b c t h w", t=T)

    @torch.no_grad()
    def decode_video(self, encoded_video):
        """
        encoded_video: (B, C, T, H, W)
        """
        is_video = False
        B, T = encoded_video.shape[0], 1
        if len(encoded_video.shape) == 5:
            is_video = True
            T = encoded_video.shape[2]
            encoded_video = rearrange(encoded_video, "b c t h w -> (b t) c h w")
        decoded_full = []
        or_dtype = encoded_video.dtype

        for i in range(0, T * B, self.max_chunk_decode):  # Slow but no memory issues
            if self.latent_type in ["stable", "refiner"]:
                decoded_full.append(
                    self.vae_model.decode(
                        (1 / self.vae_model.config.scaling_factor)
                        * encoded_video[i : i + self.max_chunk_decode]
                    ).sample
                )
            elif self.latent_type == "video":
                chunk = encoded_video[i : i + self.max_chunk_decode].to(
                    dtype=self.vae_model.dtype
                )
                num_frames_in = chunk.shape[0]
                decode_kwargs = {}
                decode_kwargs["num_frames"] = num_frames_in
                decoded_full.append(
                    self.vae_model.decode(
                        1 / self.vae_model.config.scaling_factor * chunk,
                        **decode_kwargs,
                    ).sample.to(or_dtype)
                )
            elif self.latent_type == "ldm":
                decoded_full.append(
                    self.vae_model.decode_first_stage(
                        1 / 0.18215 * encoded_video[i : i + self.max_chunk_decode]
                    )
                )
        decoded_video = torch.cat(decoded_full, dim=0)
        if not is_video:
            return decoded_video.clamp(-1.0, 1.0)
        return rearrange(decoded_video, "(b t) c h w -> b c t h w", t=T).clamp(
            -1.0, 1.0
        )