# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib import glob import inspect import math import os import platform import re import shutil import subprocess import time from pathlib import Path from typing import Optional import cv2 import numpy as np import pkg_resources as pkg import psutil import requests import torch from matplotlib import font_manager from ultralytics.utils import (ASSETS, AUTOINSTALL, LINUX, LOGGER, ONLINE, ROOT, USER_CONFIG_DIR, ThreadingLocked, TryExcept, clean_url, colorstr, downloads, emojis, is_colab, is_docker, is_jupyter, is_kaggle, is_online, is_pip_package, url2file) def is_ascii(s) -> bool: """ Check if a string is composed of only ASCII characters. Args: s (str): String to be checked. Returns: bool: True if the string is composed only of ASCII characters, False otherwise. """ # Convert list, tuple, None, etc. to string s = str(s) # Check if the string is composed of only ASCII characters return all(ord(c) < 128 for c in s) def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0): """ Verify image size is a multiple of the given stride in each dimension. If the image size is not a multiple of the stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value. Args: imgsz (int | cList[int]): Image size. stride (int): Stride value. min_dim (int): Minimum number of dimensions. max_dim (int): Maximum number of dimensions. floor (int): Minimum allowed value for image size. Returns: (List[int]): Updated image size. """ # Convert stride to integer if it is a tensor stride = int(stride.max() if isinstance(stride, torch.Tensor) else stride) # Convert image size to list if it is an integer if isinstance(imgsz, int): imgsz = [imgsz] elif isinstance(imgsz, (list, tuple)): imgsz = list(imgsz) else: raise TypeError(f"'imgsz={imgsz}' is of invalid type {type(imgsz).__name__}. " f"Valid imgsz types are int i.e. 'imgsz=640' or list i.e. 'imgsz=[640,640]'") # Apply max_dim if len(imgsz) > max_dim: msg = "'train' and 'val' imgsz must be an integer, while 'predict' and 'export' imgsz may be a [h, w] list " \ "or an integer, i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'" if max_dim != 1: raise ValueError(f'imgsz={imgsz} is not a valid image size. {msg}') LOGGER.warning(f"WARNING ⚠️ updating to 'imgsz={max(imgsz)}'. {msg}") imgsz = [max(imgsz)] # Make image size a multiple of the stride sz = [max(math.ceil(x / stride) * stride, floor) for x in imgsz] # Print warning message if image size was updated if sz != imgsz: LOGGER.warning(f'WARNING ⚠️ imgsz={imgsz} must be multiple of max stride {stride}, updating to {sz}') # Add missing dimensions if necessary sz = [sz[0], sz[0]] if min_dim == 2 and len(sz) == 1 else sz[0] if min_dim == 1 and len(sz) == 1 else sz return sz def check_version(current: str = '0.0.0', required: str = '0.0.0', name: str = 'version ', hard: bool = False, verbose: bool = False) -> bool: """ Check current version against the required version or range. Args: current (str): Current version. required (str): Required version or range (in pip-style format). name (str): Name to be used in warning message. hard (bool): If True, raise an AssertionError if the requirement is not met. verbose (bool): If True, print warning message if requirement is not met. Returns: (bool): True if requirement is met, False otherwise. Example: # check if current version is exactly 22.04 check_version(current='22.04', required='==22.04') # check if current version is greater than or equal to 22.04 check_version(current='22.10', required='22.04') # assumes '>=' inequality if none passed # check if current version is less than or equal to 22.04 check_version(current='22.04', required='<=22.04') # check if current version is between 20.04 (inclusive) and 22.04 (exclusive) check_version(current='21.10', required='>20.04,<22.04') """ current = pkg.parse_version(current) constraints = re.findall(r'([<>!=]{1,2}\s*\d+\.\d+)', required) or [f'>={required}'] result = True for constraint in constraints: op, version = re.match(r'([<>!=]{1,2})\s*(\d+\.\d+)', constraint).groups() version = pkg.parse_version(version) if op == '==' and current != version: result = False elif op == '!=' and current == version: result = False elif op == '>=' and not (current >= version): result = False elif op == '<=' and not (current <= version): result = False elif op == '>' and not (current > version): result = False elif op == '<' and not (current < version): result = False if not result: warning_message = f'WARNING ⚠️ {name}{required} is required, but {name}{current} is currently installed' if hard: raise ModuleNotFoundError(emojis(warning_message)) # assert version requirements met if verbose: LOGGER.warning(warning_message) return result def check_latest_pypi_version(package_name='ultralytics'): """ Returns the latest version of a PyPI package without downloading or installing it. Parameters: package_name (str): The name of the package to find the latest version for. Returns: (str): The latest version of the package. """ with contextlib.suppress(Exception): requests.packages.urllib3.disable_warnings() # Disable the InsecureRequestWarning response = requests.get(f'https://pypi.org/pypi/{package_name}/json', timeout=3) if response.status_code == 200: return response.json()['info']['version'] def check_pip_update_available(): """ Checks if a new version of the ultralytics package is available on PyPI. Returns: (bool): True if an update is available, False otherwise. """ if ONLINE and is_pip_package(): with contextlib.suppress(Exception): from ultralytics import __version__ latest = check_latest_pypi_version() if pkg.parse_version(__version__) < pkg.parse_version(latest): # update is available LOGGER.info(f'New https://pypi.org/project/ultralytics/{latest} available 😃 ' f"Update with 'pip install -U ultralytics'") return True return False @ThreadingLocked() def check_font(font='Arial.ttf'): """ Find font locally or download to user's configuration directory if it does not already exist. Args: font (str): Path or name of font. Returns: file (Path): Resolved font file path. """ name = Path(font).name # Check USER_CONFIG_DIR file = USER_CONFIG_DIR / name if file.exists(): return file # Check system fonts matches = [s for s in font_manager.findSystemFonts() if font in s] if any(matches): return matches[0] # Download to USER_CONFIG_DIR if missing url = f'https://ultralytics.com/assets/{name}' if downloads.is_url(url): downloads.safe_download(url=url, file=file) return file def check_python(minimum: str = '3.8.0') -> bool: """ Check current python version against the required minimum version. Args: minimum (str): Required minimum version of python. Returns: None """ return check_version(platform.python_version(), minimum, name='Python ', hard=True) @TryExcept() def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=(), install=True, cmds=''): """ Check if installed dependencies meet YOLOv8 requirements and attempt to auto-update if needed. Args: requirements (Union[Path, str, List[str]]): Path to a requirements.txt file, a single package requirement as a string, or a list of package requirements as strings. exclude (Tuple[str]): Tuple of package names to exclude from checking. install (bool): If True, attempt to auto-update packages that don't meet requirements. cmds (str): Additional commands to pass to the pip install command when auto-updating. Example: ```python from ultralytics.utils.checks import check_requirements # Check a requirements.txt file check_requirements('path/to/requirements.txt') # Check a single package check_requirements('ultralytics>=8.0.0') # Check multiple packages check_requirements(['numpy', 'ultralytics>=8.0.0']) ``` """ prefix = colorstr('red', 'bold', 'requirements:') check_python() # check python version check_torchvision() # check torch-torchvision compatibility if isinstance(requirements, Path): # requirements.txt file file = requirements.resolve() assert file.exists(), f'{prefix} {file} not found, check failed.' with file.open() as f: requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude] elif isinstance(requirements, str): requirements = [requirements] pkgs = [] for r in requirements: r_stripped = r.split('/')[-1].replace('.git', '') # replace git+https://org/repo.git -> 'repo' try: pkg.require(r_stripped) # exception if requirements not met except pkg.DistributionNotFound: try: # attempt to import (slower but more accurate) import importlib importlib.import_module(next(pkg.parse_requirements(r_stripped)).name) except ImportError: pkgs.append(r) except pkg.VersionConflict: pkgs.append(r) s = ' '.join(f'"{x}"' for x in pkgs) # console string if s: if install and AUTOINSTALL: # check environment variable n = len(pkgs) # number of packages updates LOGGER.info(f"{prefix} Ultralytics requirement{'s' * (n > 1)} {pkgs} not found, attempting AutoUpdate...") try: t = time.time() assert is_online(), 'AutoUpdate skipped (offline)' LOGGER.info(subprocess.check_output(f'pip install --no-cache {s} {cmds}', shell=True).decode()) dt = time.time() - t LOGGER.info( f"{prefix} AutoUpdate success ✅ {dt:.1f}s, installed {n} package{'s' * (n > 1)}: {pkgs}\n" f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n") except Exception as e: LOGGER.warning(f'{prefix} ❌ {e}') return False else: return False return True def check_torchvision(): """ Checks the installed versions of PyTorch and Torchvision to ensure they're compatible. This function checks the installed versions of PyTorch and Torchvision, and warns if they're incompatible according to the provided compatibility table based on https://github.com/pytorch/vision#installation. The compatibility table is a dictionary where the keys are PyTorch versions and the values are lists of compatible Torchvision versions. """ import torchvision # Compatibility table compatibility_table = {'2.0': ['0.15'], '1.13': ['0.14'], '1.12': ['0.13']} # Extract only the major and minor versions v_torch = '.'.join(torch.__version__.split('+')[0].split('.')[:2]) v_torchvision = '.'.join(torchvision.__version__.split('+')[0].split('.')[:2]) if v_torch in compatibility_table: compatible_versions = compatibility_table[v_torch] if all(pkg.parse_version(v_torchvision) != pkg.parse_version(v) for v in compatible_versions): print(f'WARNING ⚠️ torchvision=={v_torchvision} is incompatible with torch=={v_torch}.\n' f"Run 'pip install torchvision=={compatible_versions[0]}' to fix torchvision or " "'pip install -U torch torchvision' to update both.\n" 'For a full compatibility table see https://github.com/pytorch/vision#installation') def check_suffix(file='yolov8n.pt', suffix='.pt', msg=''): """Check file(s) for acceptable suffix.""" if file and suffix: if isinstance(suffix, str): suffix = (suffix, ) for f in file if isinstance(file, (list, tuple)) else [file]: s = Path(f).suffix.lower().strip() # file suffix if len(s): assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}, not {s}' def check_yolov5u_filename(file: str, verbose: bool = True): """Replace legacy YOLOv5 filenames with updated YOLOv5u filenames.""" if 'yolov3' in file or 'yolov5' in file: if 'u.yaml' in file: file = file.replace('u.yaml', '.yaml') # i.e. yolov5nu.yaml -> yolov5n.yaml elif '.pt' in file and 'u' not in file: original_file = file file = re.sub(r'(.*yolov5([nsmlx]))\.pt', '\\1u.pt', file) # i.e. yolov5n.pt -> yolov5nu.pt file = re.sub(r'(.*yolov5([nsmlx])6)\.pt', '\\1u.pt', file) # i.e. yolov5n6.pt -> yolov5n6u.pt file = re.sub(r'(.*yolov3(|-tiny|-spp))\.pt', '\\1u.pt', file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt if file != original_file and verbose: LOGGER.info( f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are " f'trained with https://github.com/ultralytics/ultralytics and feature improved performance vs ' f'standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n') return file def check_file(file, suffix='', download=True, hard=True): """Search/download file (if necessary) and return path.""" check_suffix(file, suffix) # optional file = str(file).strip() # convert to string and strip spaces file = check_yolov5u_filename(file) # yolov5n -> yolov5nu if not file or ('://' not in file and Path(file).exists()): # exists ('://' check required in Windows Python<3.10) return file elif download and file.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')): # download url = file # warning: Pathlib turns :// -> :/ file = url2file(file) # '%2F' to '/', split https://url.com/file.txt?auth if Path(file).exists(): LOGGER.info(f'Found {clean_url(url)} locally at {file}') # file already exists else: downloads.safe_download(url=url, file=file, unzip=False) return file else: # search files = glob.glob(str(ROOT / 'cfg' / '**' / file), recursive=True) # find file if not files and hard: raise FileNotFoundError(f"'{file}' does not exist") elif len(files) > 1 and hard: raise FileNotFoundError(f"Multiple files match '{file}', specify exact path: {files}") return files[0] if len(files) else [] # return file def check_yaml(file, suffix=('.yaml', '.yml'), hard=True): """Search/download YAML file (if necessary) and return path, checking suffix.""" return check_file(file, suffix, hard=hard) def check_imshow(warn=False): """Check if environment supports image displays.""" try: if LINUX: assert 'DISPLAY' in os.environ and not is_docker() and not is_colab() and not is_kaggle() cv2.imshow('test', np.zeros((8, 8, 3), dtype=np.uint8)) # show a small 8-pixel image cv2.waitKey(1) cv2.destroyAllWindows() cv2.waitKey(1) return True except Exception as e: if warn: LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}') return False def check_yolo(verbose=True, device=''): """Return a human-readable YOLO software and hardware summary.""" from ultralytics.utils.torch_utils import select_device if is_jupyter(): if check_requirements('wandb', install=False): os.system('pip uninstall -y wandb') # uninstall wandb: unwanted account creation prompt with infinite hang if is_colab(): shutil.rmtree('sample_data', ignore_errors=True) # remove colab /sample_data directory if verbose: # System info gib = 1 << 30 # bytes per GiB ram = psutil.virtual_memory().total total, used, free = shutil.disk_usage('/') s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)' with contextlib.suppress(Exception): # clear display if ipython is installed from IPython import display display.clear_output() else: s = '' select_device(device=device, newline=False) LOGGER.info(f'Setup complete ✅ {s}') def check_amp(model): """ This function checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLOv8 model. If the checks fail, it means there are anomalies with AMP on the system that may cause NaN losses or zero-mAP results, so AMP will be disabled during training. Args: model (nn.Module): A YOLOv8 model instance. Example: ```python from ultralytics import YOLO from ultralytics.utils.checks import check_amp model = YOLO('yolov8n.pt').model.cuda() check_amp(model) ``` Returns: (bool): Returns True if the AMP functionality works correctly with YOLOv8 model, else False. """ device = next(model.parameters()).device # get model device if device.type in ('cpu', 'mps'): return False # AMP only used on CUDA devices def amp_allclose(m, im): """All close FP32 vs AMP results.""" a = m(im, device=device, verbose=False)[0].boxes.data # FP32 inference with torch.cuda.amp.autocast(True): b = m(im, device=device, verbose=False)[0].boxes.data # AMP inference del m return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance im = ASSETS / 'bus.jpg' # image to check prefix = colorstr('AMP: ') LOGGER.info(f'{prefix}running Automatic Mixed Precision (AMP) checks with YOLOv8n...') warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False." try: from ultralytics import YOLO assert amp_allclose(YOLO('yolov8n.pt'), im) LOGGER.info(f'{prefix}checks passed ✅') except ConnectionError: LOGGER.warning(f'{prefix}checks skipped ⚠️, offline and unable to download YOLOv8n. {warning_msg}') except (AttributeError, ModuleNotFoundError): LOGGER.warning( f'{prefix}checks skipped ⚠️. Unable to load YOLOv8n due to possible Ultralytics package modifications. {warning_msg}' ) except AssertionError: LOGGER.warning(f'{prefix}checks failed ❌. Anomalies were detected with AMP on your system that may lead to ' f'NaN losses or zero-mAP results, so AMP will be disabled during training.') return False return True def git_describe(path=ROOT): # path must be a directory """Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe.""" with contextlib.suppress(Exception): return subprocess.check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1] return '' def print_args(args: Optional[dict] = None, show_file=True, show_func=False): """Print function arguments (optional args dict).""" def strip_auth(v): """Clean longer Ultralytics HUB URLs by stripping potential authentication information.""" return clean_url(v) if (isinstance(v, str) and v.startswith('http') and len(v) > 100) else v x = inspect.currentframe().f_back # previous frame file, _, func, _, _ = inspect.getframeinfo(x) if args is None: # get args automatically args, _, _, frm = inspect.getargvalues(x) args = {k: v for k, v in frm.items() if k in args} try: file = Path(file).resolve().relative_to(ROOT).with_suffix('') except ValueError: file = Path(file).stem s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '') LOGGER.info(colorstr(s) + ', '.join(f'{k}={strip_auth(v)}' for k, v in args.items())) def cuda_device_count() -> int: """Get the number of NVIDIA GPUs available in the environment. Returns: (int): The number of NVIDIA GPUs available. """ try: # Run the nvidia-smi command and capture its output output = subprocess.check_output(['nvidia-smi', '--query-gpu=count', '--format=csv,noheader,nounits'], encoding='utf-8') # Take the first line and strip any leading/trailing white space first_line = output.strip().split('\n')[0] return int(first_line) except (subprocess.CalledProcessError, FileNotFoundError, ValueError): # If the command fails, nvidia-smi is not found, or output is not an integer, assume no GPUs are available return 0 def cuda_is_available() -> bool: """Check if CUDA is available in the environment. Returns: (bool): True if one or more NVIDIA GPUs are available, False otherwise. """ return cuda_device_count() > 0