# Ultralytics YOLO 🚀, AGPL-3.0 license """ Convolution modules """ import math import numpy as np import torch import torch.nn as nn __all__ = ('Conv', 'Conv2', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv', 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv') def autopad(k, p=None, d=1): # kernel, padding, dilation """Pad to 'same' shape outputs.""" if d > 1: k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p class Conv(nn.Module): """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): """Initialize Conv layer with given arguments including activation.""" super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): """Apply convolution, batch normalization and activation to input tensor.""" return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): """Perform transposed convolution of 2D data.""" return self.act(self.conv(x)) class Conv2(Conv): """Simplified RepConv module with Conv fusing.""" def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True): """Initialize Conv layer with given arguments including activation.""" super().__init__(c1, c2, k, s, p, g=g, d=d, act=act) self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv def forward(self, x): """Apply convolution, batch normalization and activation to input tensor.""" return self.act(self.bn(self.conv(x) + self.cv2(x))) def forward_fuse(self, x): """Apply fused convolution, batch normalization and activation to input tensor.""" return self.act(self.bn(self.conv(x))) def fuse_convs(self): """Fuse parallel convolutions.""" w = torch.zeros_like(self.conv.weight.data) i = [x // 2 for x in w.shape[2:]] w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone() self.conv.weight.data += w self.__delattr__('cv2') self.forward = self.forward_fuse class LightConv(nn.Module): """Light convolution with args(ch_in, ch_out, kernel). https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py """ def __init__(self, c1, c2, k=1, act=nn.ReLU()): """Initialize Conv layer with given arguments including activation.""" super().__init__() self.conv1 = Conv(c1, c2, 1, act=False) self.conv2 = DWConv(c2, c2, k, act=act) def forward(self, x): """Apply 2 convolutions to input tensor.""" return self.conv2(self.conv1(x)) class DWConv(Conv): """Depth-wise convolution.""" def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act) class DWConvTranspose2d(nn.ConvTranspose2d): """Depth-wise transpose convolution.""" def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2)) class ConvTranspose(nn.Module): """Convolution transpose 2d layer.""" default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True): """Initialize ConvTranspose2d layer with batch normalization and activation function.""" super().__init__() self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn) self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity() self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): """Applies transposed convolutions, batch normalization and activation to input.""" return self.act(self.bn(self.conv_transpose(x))) def forward_fuse(self, x): """Applies activation and convolution transpose operation to input.""" return self.act(self.conv_transpose(x)) class Focus(nn.Module): """Focus wh information into c-space.""" def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super().__init__() self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act) # self.contract = Contract(gain=2) def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1)) # return self.conv(self.contract(x)) class GhostConv(nn.Module): """Ghost Convolution https://github.com/huawei-noah/ghostnet.""" def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups super().__init__() c_ = c2 // 2 # hidden channels self.cv1 = Conv(c1, c_, k, s, None, g, act=act) self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act) def forward(self, x): """Forward propagation through a Ghost Bottleneck layer with skip connection.""" y = self.cv1(x) return torch.cat((y, self.cv2(y)), 1) class RepConv(nn.Module): """ RepConv is a basic rep-style block, including training and deploy status. This module is used in RT-DETR. Based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py """ default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False): super().__init__() assert k == 3 and p == 1 self.g = g self.c1 = c1 self.c2 = c2 self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False) self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False) def forward_fuse(self, x): """Forward process""" return self.act(self.conv(x)) def forward(self, x): """Forward process""" id_out = 0 if self.bn is None else self.bn(x) return self.act(self.conv1(x) + self.conv2(x) + id_out) def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1) kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2) kernelid, biasid = self._fuse_bn_tensor(self.bn) return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) def _fuse_bn_tensor(self, branch): if branch is None: return 0, 0 if isinstance(branch, Conv): kernel = branch.conv.weight running_mean = branch.bn.running_mean running_var = branch.bn.running_var gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn.eps elif isinstance(branch, nn.BatchNorm2d): if not hasattr(self, 'id_tensor'): input_dim = self.c1 // self.g kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32) for i in range(self.c1): kernel_value[i, i % input_dim, 1, 1] = 1 self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device) kernel = self.id_tensor running_mean = branch.running_mean running_var = branch.running_var gamma = branch.weight beta = branch.bias eps = branch.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std def fuse_convs(self): if hasattr(self, 'conv'): return kernel, bias = self.get_equivalent_kernel_bias() self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels, out_channels=self.conv1.conv.out_channels, kernel_size=self.conv1.conv.kernel_size, stride=self.conv1.conv.stride, padding=self.conv1.conv.padding, dilation=self.conv1.conv.dilation, groups=self.conv1.conv.groups, bias=True).requires_grad_(False) self.conv.weight.data = kernel self.conv.bias.data = bias for para in self.parameters(): para.detach_() self.__delattr__('conv1') self.__delattr__('conv2') if hasattr(self, 'nm'): self.__delattr__('nm') if hasattr(self, 'bn'): self.__delattr__('bn') if hasattr(self, 'id_tensor'): self.__delattr__('id_tensor') class ChannelAttention(nn.Module): """Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet.""" def __init__(self, channels: int) -> None: super().__init__() self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True) self.act = nn.Sigmoid() def forward(self, x: torch.Tensor) -> torch.Tensor: return x * self.act(self.fc(self.pool(x))) class SpatialAttention(nn.Module): """Spatial-attention module.""" def __init__(self, kernel_size=7): """Initialize Spatial-attention module with kernel size argument.""" super().__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.act = nn.Sigmoid() def forward(self, x): """Apply channel and spatial attention on input for feature recalibration.""" return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1))) class CBAM(nn.Module): """Convolutional Block Attention Module.""" def __init__(self, c1, kernel_size=7): # ch_in, kernels super().__init__() self.channel_attention = ChannelAttention(c1) self.spatial_attention = SpatialAttention(kernel_size) def forward(self, x): """Applies the forward pass through C1 module.""" return self.spatial_attention(self.channel_attention(x)) class Concat(nn.Module): """Concatenate a list of tensors along dimension.""" def __init__(self, dimension=1): """Concatenates a list of tensors along a specified dimension.""" super().__init__() self.d = dimension def forward(self, x): """Forward pass for the YOLOv8 mask Proto module.""" return torch.cat(x, self.d)