# Ultralytics YOLO 🚀, AGPL-3.0 license # Builds ultralytics/ultralytics:latest image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics # Image is CUDA-optimized for YOLOv8 single/multi-GPU training and inference # Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch or nvcr.io/nvidia/pytorch:23.03-py3 FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime RUN pip install --no-cache nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # Downloads to user config dir ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ # Install linux packages # g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package RUN apt update \ && apt install --no-install-recommends -y gcc git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 # RUN alias python=python3 # Security updates # https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796 RUN apt upgrade --no-install-recommends -y openssl tar # Create working directory WORKDIR /usr/src/ultralytics # Copy contents # COPY . /usr/src/app (issues as not a .git directory) RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/ # Install pip packages RUN python3 -m pip install --upgrade pip wheel RUN pip install --no-cache -e ".[export]" thop albumentations comet pycocotools pytest-cov # Run exports to AutoInstall packages RUN yolo export model=tmp/yolov8n.pt format=edgetpu imgsz=32 RUN yolo export model=tmp/yolov8n.pt format=ncnn imgsz=32 # Requires <= Python 3.10, bug with paddlepaddle==2.5.0 RUN pip install --no-cache paddlepaddle==2.4.2 x2paddle # Fix error: `np.bool` was a deprecated alias for the builtin `bool` RUN pip install --no-cache numpy==1.23.5 # Remove exported models RUN rm -rf tmp # Set environment variables ENV OMP_NUM_THREADS=1 # Avoid DDP error "MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library" https://github.com/pytorch/pytorch/issues/37377 ENV MKL_THREADING_LAYER=GNU # Usage Examples ------------------------------------------------------------------------------------------------------- # Build and Push # t=ultralytics/ultralytics:latest && sudo docker build -f docker/Dockerfile -t $t . && sudo docker push $t # Pull and Run with access to all GPUs # t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t # Pull and Run with access to GPUs 2 and 3 (inside container CUDA devices will appear as 0 and 1) # t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus '"device=2,3"' $t # Pull and Run with local directory access # t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t # Kill all # sudo docker kill $(sudo docker ps -q) # Kill all image-based # sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/ultralytics:latest) # DockerHub tag update # t=ultralytics/ultralytics:latest tnew=ultralytics/ultralytics:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew # Clean up # sudo docker system prune -a --volumes # Update Ubuntu drivers # https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/ # DDP test # python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3 # GCP VM from Image # docker.io/ultralytics/ultralytics:latest