# Ultralytics YOLO 🚀, AGPL-3.0 license import torch import torch.nn as nn import torch.nn.functional as F from ultralytics.utils.metrics import OKS_SIGMA from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh from ultralytics.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors from .metrics import bbox_iou from .tal import bbox2dist import numpy as np import sys # torch.autograd.set_detect_anomaly(True) def display_shape(input_item, prefix=""): # If the input_item is a list or a tuple, iterate through its elements if isinstance(input_item, (list, tuple)): for idx, item in enumerate(input_item): # For nested lists or tuples, add an additional level to the prefix new_prefix = f"{prefix}[{idx}]" display_shape(item, new_prefix) # If the input_item is a tensor, print its shape elif isinstance(input_item, torch.Tensor): print(f"{prefix}: {input_item.shape}") else: print(f"Unsupported type {type(input_item)} at {prefix}") def Heaviside(phi, alpha, epsilon): device = phi.device # Get the device of phi # For values outside of [-epsilon, epsilon] H_positive = torch.ones_like(phi, device=device) H_negative = alpha * torch.ones_like(phi, device=device) # For values inside [-epsilon, epsilon] default = 3 * (1 - alpha) / 4 * (phi / epsilon - phi**3 / (3 * epsilon**3)) + (1 + alpha) / 2 # Construct Heavisidve using conditions H = torch.where(phi > epsilon, H_positive, torch.where(phi < -epsilon, H_negative, default)) return H def smooth_heaviside(phi, alpha, epsilon): # Scale and shift phi for the sigmoid function scaled_phi = (phi - alpha) / epsilon # Apply the sigmoid function H = torch.sigmoid(scaled_phi) return H def calc_Phi(variable, LSgrid): device = variable.device # Get the device of the variable x0 = variable[0] y0 = variable[1] L = variable[2] t = variable[3] # Constant thickness angle = variable[4] # Rotation st = torch.sin(angle) ct = torch.cos(angle) x1 = ct * (LSgrid[0][:, None].to(device) - x0) + st * (LSgrid[1][:, None].to(device) - y0) y1 = -st * (LSgrid[0][:, None].to(device) - x0) + ct * (LSgrid[1][:, None].to(device) - y0) # Regularized hyperellipse equation a = L / 2 # Semi-major axis b = t / 2 # Constant semi-minor axis small_constant = 1e-9 # To avoid division by zero temp = ((x1 / (a + small_constant))**6) + ((y1 / (b + small_constant))**6) # # Ensuring the hyperellipse shape allPhi = 1 - (temp + small_constant)**(1/6) # # Call Heaviside function with allPhi alpha = torch.tensor(0.0, device=device, dtype=torch.float32) epsilon = torch.tensor(0.001, device=device, dtype=torch.float32) H_phi = smooth_heaviside(allPhi, alpha, epsilon) return allPhi, H_phi class CustomDiceLoss(nn.Module): def __init__(self, weight=None, size_average=True): super(CustomDiceLoss, self).__init__() self.size_average = size_average def forward(self, inputs, targets, smooth=1): # If your model contains a sigmoid or equivalent activation layer, comment this line #inputs = F.sigmoid(inputs) # Check if the input tensors are of expected shape if inputs.shape != targets.shape: raise ValueError("Shape mismatch: inputs and targets must have the same shape") # Flatten tensors inputs_flat = inputs.view(inputs.shape[0], -1) targets_flat = targets.view(targets.shape[0], -1) # Compute intersections and unions intersection = (inputs_flat * targets_flat).sum(1) union = inputs_flat.sum(1) + targets_flat.sum(1) # Compute Dice dice = (2. * intersection + smooth) / (union + smooth) dice_loss = 1 - dice # If you want the average loss over the batch to be returned if self.size_average: return dice_loss.mean() else: # If you want individual losses for each sample in the batch return dice_loss class CustomTverskyLoss(nn.Module): def __init__(self, alpha, beta, size_average=True): super(CustomTverskyLoss, self).__init__() self.alpha = alpha self.beta = beta self.size_average = size_average def forward(self, inputs, targets, smooth=1): # If your model contains a sigmoid or equivalent activation layer, uncomment this line # inputs = F.sigmoid(inputs) # Check if the input tensors are of expected shape if inputs.shape != targets.shape: raise ValueError("Shape mismatch: inputs and targets must have the same shape") # Flatten tensors inputs_flat = inputs.view(inputs.shape[0], -1) targets_flat = targets.view(targets.shape[0], -1) # Compute true positives, false positives, and false negatives true_pos = (inputs_flat * targets_flat).sum(1) false_neg = ((1 - inputs_flat) * targets_flat).sum(1) false_pos = (inputs_flat * (1 - targets_flat)).sum(1) # Compute the Tversky index tversky_index = (true_pos + smooth) / (true_pos + self.alpha * false_neg + self.beta * false_pos + smooth) tversky_loss = 1 - tversky_index # If you want the average loss over the batch to be returned if self.size_average: return tversky_loss.mean() else: # If you want individual losses for each sample in the batch return tversky_loss class VarifocalLoss(nn.Module): """Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367.""" def __init__(self): """Initialize the VarifocalLoss class.""" super().__init__() @staticmethod def forward(pred_score, gt_score, label, alpha=0.75, gamma=2.0): """Computes varfocal loss.""" weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label with torch.cuda.amp.autocast(enabled=False): loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') * weight).mean(1).sum() return loss class FocalLoss(nn.Module): """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5).""" def __init__(self, ): super().__init__() @staticmethod def forward(pred, label, gamma=1.5, alpha=0.25): """Calculates and updates confusion matrix for object detection/classification tasks.""" loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none') # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = pred.sigmoid() # prob from logits p_t = label * pred_prob + (1 - label) * (1 - pred_prob) modulating_factor = (1.0 - p_t) ** gamma loss *= modulating_factor if alpha > 0: alpha_factor = label * alpha + (1 - label) * (1 - alpha) loss *= alpha_factor return loss.mean(1).sum() class BboxLoss(nn.Module): def __init__(self, reg_max, use_dfl=False): """Initialize the BboxLoss module with regularization maximum and DFL settings.""" super().__init__() self.reg_max = reg_max self.use_dfl = use_dfl def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask): """IoU loss.""" weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1) iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True) loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum # DFL loss if self.use_dfl: target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max) loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight loss_dfl = loss_dfl.sum() / target_scores_sum else: loss_dfl = torch.tensor(0.0).to(pred_dist.device) return loss_iou, loss_dfl @staticmethod def _df_loss(pred_dist, target): """Return sum of left and right DFL losses.""" # Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391 tl = target.long() # target left tr = tl + 1 # target right wl = tr - target # weight left wr = 1 - wl # weight right return (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl + F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True) class KeypointLoss(nn.Module): """Criterion class for computing training losses.""" def __init__(self, sigmas) -> None: super().__init__() self.sigmas = sigmas def forward(self, pred_kpts, gt_kpts, kpt_mask, area): """Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints.""" d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2 kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9) # e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean() class v8DetectionLoss: """Criterion class for computing training losses.""" def __init__(self, model): # model must be de-paralleled device = next(model.parameters()).device # get model device h = model.args # hyperparameters m = model.model[-1] # Detect() module self.bce = nn.BCEWithLogitsLoss(reduction='none') self.hyp = h self.stride = m.stride # model strides self.nc = m.nc # number of classes self.no = m.no self.reg_max = m.reg_max self.device = device self.use_dfl = m.reg_max > 1 self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0) self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device) self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device) def preprocess(self, targets, batch_size, scale_tensor): """Preprocesses the target counts and matches with the input batch size to output a tensor.""" if targets.shape[0] == 0: out = torch.zeros(batch_size, 0, 5, device=self.device) else: i = targets[:, 0] # image index _, counts = i.unique(return_counts=True) counts = counts.to(dtype=torch.int32) out = torch.zeros(batch_size, counts.max(), 5, device=self.device) for j in range(batch_size): matches = i == j n = matches.sum() if n: out[j, :n] = targets[matches, 1:] out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor)) return out def bbox_decode(self, anchor_points, pred_dist): """Decode predicted object bounding box coordinates from anchor points and distribution.""" if self.use_dfl: b, a, c = pred_dist.shape # batch, anchors, channels pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype)) # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype)) # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2) return dist2bbox(pred_dist, anchor_points, xywh=False) def __call__(self, preds, batch): """Calculate the sum of the loss for box, cls and dfl multiplied by batch size.""" loss = torch.zeros(3, device=self.device) # box, cls, dfl feats = preds[1] if isinstance(preds, tuple) else preds pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( (self.reg_max * 4, self.nc), 1) pred_scores = pred_scores.permute(0, 2, 1).contiguous() pred_distri = pred_distri.permute(0, 2, 1).contiguous() dtype = pred_scores.dtype batch_size = pred_scores.shape[0] imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) # targets targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1) targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) # pboxes pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) _, target_bboxes, target_scores, fg_mask, _ = self.assigner( pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt) target_scores_sum = max(target_scores.sum(), 1) # cls loss # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE # bbox loss if fg_mask.sum(): target_bboxes /= stride_tensor loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask) loss[0] *= self.hyp.box # box gain loss[1] *= self.hyp.cls # cls gain loss[2] *= self.hyp.dfl # dfl gain return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) class v8SegmentationLoss(v8DetectionLoss): """Criterion class for computing training losses.""" def __init__(self, model): # model must be de-paralleled super().__init__(model) self.nm = model.model[-1].nm # number of masks try: self.overlap = model.args.overlap_mask except: self.overlap =False self.diceloss = CustomDiceLoss() #self.bceloss = nn.BCELoss() #self.tversky_loss= CustomTverskyLoss(alpha=0.7, beta=0.3) def __call__(self, preds, batch): """Calculate and return the loss for the YOLO model.""" loss = torch.zeros(5, device=self.device) # box, cls, dfl if len(preds) ==3: feats, pred_masks, proto = preds elif len(preds) ==4: feats, pred_masks, proto, regression_tensor = preds #Let's describe each variables: #display_shape(preds) else: feats, pred_masks, proto, regression_tensor = preds[1] batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( (self.reg_max * 4, self.nc), 1) # b, grids, .. pred_scores = pred_scores.permute(0, 2, 1).contiguous() pred_distri = pred_distri.permute(0, 2, 1).contiguous() pred_masks = pred_masks.permute(0, 2, 1).contiguous() dtype = pred_scores.dtype imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) # targets try: batch_idx = batch['batch_idx'].view(-1, 1) targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1) targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) except RuntimeError as e: raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n' "This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, " "i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a " "correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' " 'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e if 'regression_vars' in batch: max_objects = 300 # Set the fixed maximum number of objects padded_vars = [np.pad(item, ((0, max_objects - len(item)), (0, 0)), mode='constant') for item in batch['regression_vars']] regression_targets = torch.tensor(np.stack(padded_vars)).to(self.device).float() # pboxes pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) test_labels, target_bboxes, target_scores, fg_mask, target_gt_idx, regression_scores = self.assigner( pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, regression_targets) else: # regression targets will only contain zeros: regression_targets = torch.zeros((batch_size, 6, 300), device=self.device).float() pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) test_labels, target_bboxes, target_scores, fg_mask, target_gt_idx, regression_scores = self.assigner( pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, gt_regression= None) target_scores_sum = max(target_scores.sum(), 1) # cls loss # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way REG_LOSS = 'pixels' # if 'regression_vars' in batch: if REG_LOSS == 'direct': # Assuming fg_mask has shape (b, h*w) # Expand the dimensions of fg_mask to match regression_tensor fg_regression_mask = fg_mask.unsqueeze(1).expand(-1, 6, -1) # fg_regression_mask now has shape (BS, 6, 8400) filtered_predictions = regression_tensor[fg_regression_mask] #check if there are nans in regression_tensor: filtered_target = regression_scores[fg_regression_mask.permute(0,2,1).contiguous()] # Now create masked versions of your regression tensor and regression scores # Compute MSE loss on masked tensors regression_loss = F.mse_loss(filtered_predictions, filtered_target,reduction="mean") if (REG_LOSS == 'pixels' or REG_LOSS=="level") and self.hyp.reg_gain > 0: # if torch.isnan(regression_tensor).any(): # print("There are nans in regression_tensor") # sys.exit() DW = 1.0 DH = 1.0 nelx = int(200 * DW) nely = int(200 * DH) x, y = torch.meshgrid(torch.linspace(0, DW, nelx+1), torch.linspace(0, DH, nely+1)) LSgrid = torch.stack((y.flatten(), x.flatten()), dim=0) #print(pred_scores.shape,target_scores.shape) torch.Size([8, 8400, 1]) torch.Size([8, 8400, 1]) loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE if fg_mask.sum(): # bbox loss loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor, target_scores, target_scores_sum, fg_mask) # masks loss masks = batch['masks'].to(self.device).float() if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0] for i in range(batch_size): if fg_mask[i].sum(): mask_idx = target_gt_idx[i][fg_mask[i]] if self.overlap: gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0) else: gt_mask = masks[batch_idx.view(-1) == i][mask_idx] xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]] marea = xyxy2xywh(xyxyn)[:, 2:].prod(1) mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device) loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy, marea) # seg test_bboxes = pred_bboxes*stride_tensor test_bboxes = test_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]] # clip the test_bboxes between 0 and 1: test_bboxes = torch.clip(test_bboxes,0,1) filtered_regression = regression_tensor[i][:,fg_mask[i]] # Check if CUDA is available # Create the constant tensors on the specified device constant_tensor_02 = torch.full((test_bboxes.shape[0],), 0.2, device=self.device) constant_tensor_00 = torch.full((test_bboxes.shape[0],), 0.001, device=self.device) # Stack the tensors and move them to the specified device xmax = torch.stack([test_bboxes[:,2], test_bboxes[:,3], test_bboxes[:,2], test_bboxes[:,3], constant_tensor_02], dim=1).to(self.device) xmin = torch.stack([test_bboxes[:,0], test_bboxes[:,1], test_bboxes[:,0], test_bboxes[:,1], constant_tensor_00], dim=1).to(self.device) unnormalized_preds = filtered_regression.T * (xmax - xmin) + xmin # # # The design variables are infered from the two endpoints and the two thicknesses: x_center = (unnormalized_preds[:, 0] + unnormalized_preds[:, 2]) / 2 y_center = (unnormalized_preds[:, 1] + unnormalized_preds[:, 3]) / 2 L = torch.sqrt((unnormalized_preds[:, 0] - unnormalized_preds[:, 2])**2 + (unnormalized_preds[:, 1] - unnormalized_preds[:, 3])**2) L = L+1e-4 t_1 = unnormalized_preds[:, 4] epsilon = 1e-10 y_diff = unnormalized_preds[:, 3] - unnormalized_preds[:, 1] + epsilon x_diff = unnormalized_preds[:, 2] - unnormalized_preds[:, 0] + epsilon theta = torch.atan2(y_diff, x_diff) formatted_variables = torch.cat((x_center.unsqueeze(1), y_center.unsqueeze(1), L.unsqueeze(1), t_1.unsqueeze(1), theta.unsqueeze(1)), dim=1) pxyxy = test_bboxes * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device) if (REG_LOSS == "pixels" or REG_LOSS=="level") and self.hyp.reg_gain > 0: # filtered_predictions = formatted_variables[i][:,fg_mask[i]] filtered_predictions = formatted_variables pred_phi , H_phi = calc_Phi(filtered_predictions.T,LSgrid.to('cuda')) if REG_LOSS == "level": pred_phi= torch.reshape(pred_phi,(nely+1,nelx+1,H_phi.shape[-1])) normalized = (pred_phi - pred_phi.min()) / (pred_phi.max() - pred_phi.min()) cropped_gt_mask = crop_mask(gt_mask,pxyxy) normalized = normalized.permute(2, 0, 1).unsqueeze(1) # Now the shape is ([80, 1, 51, 51]) normalized = F.interpolate(normalized, size=cropped_gt_mask.shape[-2:], mode='nearest') level_loss = F.mse_loss(normalized.squeeze(1), cropped_gt_mask, reduction="mean") loss[4]+=level_loss else: H_phi= torch.reshape(H_phi,(nely+1,nelx+1,H_phi.shape[-1])) # Rearrange H_phi to the shape ([batch_size, channels, height, width]) H_phi = H_phi.permute(2, 0, 1).unsqueeze(1) # Now the shape is ([80, 1, 51, 51]) cropped_gt_mask = crop_mask(gt_mask,pxyxy) # Use interpolate to resize H_phi_resized = F.interpolate(H_phi, size=cropped_gt_mask.shape[-2:], mode='nearest') # Rearrange H_phi_resized back to the shape ([height, width, batch_size]) H_phi_resized = H_phi_resized.squeeze(1) # Now the shape is ([80, 160, 160]) #Threhsold the H_phi_resized #H_phi_resized = torch.where(H_phi_resized > 0.5, 1.0, 0.0) dice = self.diceloss(H_phi_resized, cropped_gt_mask) #tversky = self.tversky_loss(H_phi_resized, cropped_gt_mask) #mse = F.mse_loss(H_phi_resized, cropped_gt_mask, reduction="mean") loss[4]+= dice # WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove else: loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss loss[4] += 0.0 # WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove else: loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss loss[4] += 0.0 if REG_LOSS =='direct': loss[4] = regression_loss else: loss[4] *= self.hyp.reg_gain / batch_size loss[0] *= self.hyp.box # box gain loss[1] *= self.hyp.box / batch_size # seg gain loss[2] *= self.hyp.cls # cls gain loss[3] *= self.hyp.dfl # dfl gain return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) def single_mask_loss(self, gt_mask, pred, proto, xyxy, area): """Mask loss for one image.""" pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80) loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none') return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean() def single_reg_loss(self, gt_mask, pred, xyxy, area): """Mask loss for one image.""" loss = F.binary_cross_entropy_with_logits(pred, gt_mask, reduction='none') return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean() class v8PoseLoss(v8DetectionLoss): """Criterion class for computing training losses.""" def __init__(self, model): # model must be de-paralleled super().__init__(model) self.kpt_shape = model.model[-1].kpt_shape self.bce_pose = nn.BCEWithLogitsLoss() is_pose = self.kpt_shape == [17, 3] nkpt = self.kpt_shape[0] # number of keypoints sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt self.keypoint_loss = KeypointLoss(sigmas=sigmas) def __call__(self, preds, batch): """Calculate the total loss and detach it.""" loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1] pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( (self.reg_max * 4, self.nc), 1) # b, grids, .. pred_scores = pred_scores.permute(0, 2, 1).contiguous() pred_distri = pred_distri.permute(0, 2, 1).contiguous() pred_kpts = pred_kpts.permute(0, 2, 1).contiguous() dtype = pred_scores.dtype imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) # targets batch_size = pred_scores.shape[0] batch_idx = batch['batch_idx'].view(-1, 1) targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1) targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) # pboxes pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3) _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner( pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt) target_scores_sum = max(target_scores.sum(), 1) # cls loss # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE # bbox loss if fg_mask.sum(): target_bboxes /= stride_tensor loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask) keypoints = batch['keypoints'].to(self.device).float().clone() keypoints[..., 0] *= imgsz[1] keypoints[..., 1] *= imgsz[0] for i in range(batch_size): if fg_mask[i].sum(): idx = target_gt_idx[i][fg_mask[i]] gt_kpt = keypoints[batch_idx.view(-1) == i][idx] # (n, 51) gt_kpt[..., 0] /= stride_tensor[fg_mask[i]] gt_kpt[..., 1] /= stride_tensor[fg_mask[i]] area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True) pred_kpt = pred_kpts[i][fg_mask[i]] kpt_mask = gt_kpt[..., 2] != 0 loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss # kpt_score loss if pred_kpt.shape[-1] == 3: loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss loss[0] *= self.hyp.box # box gain loss[1] *= self.hyp.pose / batch_size # pose gain loss[2] *= self.hyp.kobj / batch_size # kobj gain loss[3] *= self.hyp.cls # cls gain loss[4] *= self.hyp.dfl # dfl gain return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) @staticmethod def kpts_decode(anchor_points, pred_kpts): """Decodes predicted keypoints to image coordinates.""" y = pred_kpts.clone() y[..., :2] *= 2.0 y[..., 0] += anchor_points[:, [0]] - 0.5 y[..., 1] += anchor_points[:, [1]] - 0.5 return y class v8ClassificationLoss: """Criterion class for computing training losses.""" def __call__(self, preds, batch): """Compute the classification loss between predictions and true labels.""" loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64 loss_items = loss.detach() return loss, loss_items