# Ultralytics YOLO 🚀, AGPL-3.0 license import os import re from pathlib import Path import pkg_resources as pkg from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING from ultralytics.utils.torch_utils import model_info_for_loggers try: from importlib.metadata import version import dvclive assert not TESTS_RUNNING # do not log pytest assert SETTINGS['dvc'] is True # verify integration is enabled ver = version('dvclive') if pkg.parse_version(ver) < pkg.parse_version('2.11.0'): LOGGER.debug(f'DVCLive is detected but version {ver} is incompatible (>=2.11 required).') dvclive = None # noqa: F811 except (ImportError, AssertionError, TypeError): dvclive = None # DVCLive logger instance live = None _processed_plots = {} # `on_fit_epoch_end` is called on final validation (probably need to be fixed) # for now this is the way we distinguish final evaluation of the best model vs # last epoch validation _training_epoch = False def _log_images(path, prefix=''): if live: name = path.name # Group images by batch to enable sliders in UI if m := re.search(r'_batch(\d+)', name): ni = m[1] new_stem = re.sub(r'_batch(\d+)', '_batch', path.stem) name = (Path(new_stem) / ni).with_suffix(path.suffix) live.log_image(os.path.join(prefix, name), path) def _log_plots(plots, prefix=''): for name, params in plots.items(): timestamp = params['timestamp'] if _processed_plots.get(name) != timestamp: _log_images(name, prefix) _processed_plots[name] = timestamp def _log_confusion_matrix(validator): targets = [] preds = [] matrix = validator.confusion_matrix.matrix names = list(validator.names.values()) if validator.confusion_matrix.task == 'detect': names += ['background'] for ti, pred in enumerate(matrix.T.astype(int)): for pi, num in enumerate(pred): targets.extend([names[ti]] * num) preds.extend([names[pi]] * num) live.log_sklearn_plot('confusion_matrix', targets, preds, name='cf.json', normalized=True) def on_pretrain_routine_start(trainer): try: global live live = dvclive.Live(save_dvc_exp=True, cache_images=True) LOGGER.info( f'DVCLive is detected and auto logging is enabled (can be disabled in the {SETTINGS.file} with `dvc: false`).' ) except Exception as e: LOGGER.warning(f'WARNING ⚠️ DVCLive installed but not initialized correctly, not logging this run. {e}') def on_pretrain_routine_end(trainer): _log_plots(trainer.plots, 'train') def on_train_start(trainer): if live: live.log_params(trainer.args) def on_train_epoch_start(trainer): global _training_epoch _training_epoch = True def on_fit_epoch_end(trainer): global _training_epoch if live and _training_epoch: all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr} for metric, value in all_metrics.items(): live.log_metric(metric, value) if trainer.epoch == 0: for metric, value in model_info_for_loggers(trainer).items(): live.log_metric(metric, value, plot=False) _log_plots(trainer.plots, 'train') _log_plots(trainer.validator.plots, 'val') live.next_step() _training_epoch = False def on_train_end(trainer): if live: # At the end log the best metrics. It runs validator on the best model internally. all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr} for metric, value in all_metrics.items(): live.log_metric(metric, value, plot=False) _log_plots(trainer.plots, 'val') _log_plots(trainer.validator.plots, 'val') _log_confusion_matrix(trainer.validator) if trainer.best.exists(): live.log_artifact(trainer.best, copy=True, type='model') live.end() callbacks = { 'on_pretrain_routine_start': on_pretrain_routine_start, 'on_pretrain_routine_end': on_pretrain_routine_end, 'on_train_start': on_train_start, 'on_train_epoch_start': on_train_epoch_start, 'on_fit_epoch_end': on_fit_epoch_end, 'on_train_end': on_train_end} if dvclive else {}