# Ultralytics YOLO 🚀, AGPL-3.0 license # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List import torch from torch import nn from .decoders import MaskDecoder from .encoders import ImageEncoderViT, PromptEncoder class Sam(nn.Module): mask_threshold: float = 0.0 image_format: str = 'RGB' def __init__( self, image_encoder: ImageEncoderViT, prompt_encoder: PromptEncoder, mask_decoder: MaskDecoder, pixel_mean: List[float] = (123.675, 116.28, 103.53), pixel_std: List[float] = (58.395, 57.12, 57.375) ) -> None: """ SAM predicts object masks from an image and input prompts. Note: All forward() operations moved to SAMPredictor. Args: image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings that allow for efficient mask prediction. prompt_encoder (PromptEncoder): Encodes various types of input prompts. mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts. pixel_mean (list(float)): Mean values for normalizing pixels in the input image. pixel_std (list(float)): Std values for normalizing pixels in the input image. """ super().__init__() self.image_encoder = image_encoder self.prompt_encoder = prompt_encoder self.mask_decoder = mask_decoder self.register_buffer('pixel_mean', torch.Tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer('pixel_std', torch.Tensor(pixel_std).view(-1, 1, 1), False)