# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib from copy import copy from pathlib import Path import cv2 import numpy as np import pytest import torch from PIL import Image from torchvision.transforms import ToTensor from ultralytics import RTDETR, YOLO from ultralytics.cfg import TASK2DATA from ultralytics.data.build import load_inference_source from ultralytics.utils import ASSETS, DEFAULT_CFG, LINUX, MACOS, ONLINE, ROOT, SETTINGS, WINDOWS from ultralytics.utils.downloads import download from ultralytics.utils.torch_utils import TORCH_1_9 WEIGHTS_DIR = Path(SETTINGS['weights_dir']) MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path CFG = 'yolov8n.yaml' SOURCE = ASSETS / 'bus.jpg' TMP = (ROOT / '../tests/tmp').resolve() # temp directory for test files def test_model_forward(): model = YOLO(CFG) model(source=None, imgsz=32, augment=True) # also test no source and augment def test_model_methods(): model = YOLO(MODEL) # Model methods model.info(verbose=True, detailed=True) model = model.reset_weights() model = model.load(MODEL) model.to('cpu') model.fuse() model.clear_callback('on_train_start') model._reset_callbacks() # Model properties _ = model.names _ = model.device _ = model.transforms _ = model.task_map def test_model_profile(): # Test profile=True model argument from ultralytics.nn.tasks import DetectionModel model = DetectionModel() # build model im = torch.randn(1, 3, 64, 64) # requires min imgsz=64 _ = model.predict(im, profile=True) def test_predict_txt(): # Write a list of sources (file, dir, glob, recursive glob) to a txt file txt_file = TMP / 'sources.txt' with open(txt_file, 'w') as f: for x in [ASSETS / 'bus.jpg', ASSETS, ASSETS / '*', ASSETS / '**/*.jpg']: f.write(f'{x}\n') _ = YOLO(MODEL)(source=txt_file, imgsz=32) def test_predict_img(): model = YOLO(MODEL) seg_model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt') cls_model = YOLO(WEIGHTS_DIR / 'yolov8n-cls.pt') pose_model = YOLO(WEIGHTS_DIR / 'yolov8n-pose.pt') im = cv2.imread(str(SOURCE)) assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream assert len(model(torch.zeros(320, 640, 3).numpy(), imgsz=32)) == 1 # tensor to numpy batch = [ str(SOURCE), # filename Path(SOURCE), # Path 'https://ultralytics.com/images/zidane.jpg' if ONLINE else SOURCE, # URI cv2.imread(str(SOURCE)), # OpenCV Image.open(SOURCE), # PIL np.zeros((320, 640, 3))] # numpy assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch # Test tensor inference im = cv2.imread(str(SOURCE)) # OpenCV t = cv2.resize(im, (32, 32)) t = ToTensor()(t) t = torch.stack([t, t, t, t]) results = model(t, imgsz=32) assert len(results) == t.shape[0] results = seg_model(t, imgsz=32) assert len(results) == t.shape[0] results = cls_model(t, imgsz=32) assert len(results) == t.shape[0] results = pose_model(t, imgsz=32) assert len(results) == t.shape[0] def test_predict_grey_and_4ch(): # Convert SOURCE to greyscale and 4-ch im = Image.open(SOURCE) directory = TMP / 'im4' directory.mkdir(parents=True, exist_ok=True) source_greyscale = directory / 'greyscale.jpg' source_rgba = directory / '4ch.png' source_non_utf = directory / 'non_UTF_测试文件_tést_image.jpg' source_spaces = directory / 'image with spaces.jpg' im.convert('L').save(source_greyscale) # greyscale im.convert('RGBA').save(source_rgba) # 4-ch PNG with alpha im.save(source_non_utf) # non-UTF characters in filename im.save(source_spaces) # spaces in filename # Inference model = YOLO(MODEL) for f in source_rgba, source_greyscale, source_non_utf, source_spaces: for source in Image.open(f), cv2.imread(str(f)), f: results = model(source, save=True, verbose=True, imgsz=32) assert len(results) == 1 # verify that an image was run f.unlink() # cleanup @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_track_stream(): # Test YouTube streaming inference (short 10 frame video) with non-default ByteTrack tracker # imgsz=160 required for tracking for higher confidence and better matches import yaml model = YOLO(MODEL) model.predict('https://youtu.be/G17sBkb38XQ', imgsz=96, save=True) model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker='bytetrack.yaml') model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker='botsort.yaml') # Test Global Motion Compensation (GMC) methods for gmc in 'orb', 'sift', 'ecc': with open(ROOT / 'cfg/trackers/botsort.yaml') as f: data = yaml.safe_load(f) tracker = TMP / f'botsort-{gmc}.yaml' data['gmc_method'] = gmc with open(tracker, 'w') as f: yaml.safe_dump(data, f) model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker=tracker) def test_val(): YOLO(MODEL).val(data='coco8.yaml', imgsz=32, save_hybrid=True) def test_train_scratch(): model = YOLO(CFG) model.train(data='coco8.yaml', epochs=2, imgsz=32, cache='disk', batch=-1, close_mosaic=1, name='model') model(SOURCE) def test_train_pretrained(): model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt') model.train(data='coco8-seg.yaml', epochs=1, imgsz=32, cache='ram', copy_paste=0.5, mixup=0.5, name=0) model(SOURCE) def test_export_torchscript(): f = YOLO(MODEL).export(format='torchscript', optimize=True) YOLO(f)(SOURCE) # exported model inference def test_export_onnx(): f = YOLO(MODEL).export(format='onnx', dynamic=True) YOLO(f)(SOURCE) # exported model inference def test_export_openvino(): f = YOLO(MODEL).export(format='openvino') YOLO(f)(SOURCE) # exported model inference def test_export_coreml(): if not WINDOWS: # RuntimeError: BlobWriter not loaded with coremltools 7.0 on windows if MACOS: f = YOLO(MODEL).export(format='coreml') YOLO(f)(SOURCE) # model prediction only supported on macOS for nms=False models else: YOLO(MODEL).export(format='coreml', nms=True) def test_export_tflite(enabled=False): # TF suffers from install conflicts on Windows and macOS if enabled and LINUX: model = YOLO(MODEL) f = model.export(format='tflite') YOLO(f)(SOURCE) def test_export_pb(enabled=False): # TF suffers from install conflicts on Windows and macOS if enabled and LINUX: model = YOLO(MODEL) f = model.export(format='pb') YOLO(f)(SOURCE) def test_export_paddle(enabled=False): # Paddle protobuf requirements conflicting with onnx protobuf requirements if enabled: YOLO(MODEL).export(format='paddle') def test_export_ncnn(): f = YOLO(MODEL).export(format='ncnn') YOLO(f)(SOURCE) # exported model inference def test_all_model_yamls(): for m in (ROOT / 'cfg' / 'models').rglob('*.yaml'): if 'rtdetr' in m.name: if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first' _ = RTDETR(m.name)(SOURCE, imgsz=640) # must be 640 else: YOLO(m.name) def test_workflow(): model = YOLO(MODEL) model.train(data='coco8.yaml', epochs=1, imgsz=32, optimizer='SGD') model.val(imgsz=32) model.predict(SOURCE, imgsz=32) model.export(format='onnx') # export a model to ONNX format def test_predict_callback_and_setup(): # Test callback addition for prediction def on_predict_batch_end(predictor): # results -> List[batch_size] path, im0s, _, _ = predictor.batch im0s = im0s if isinstance(im0s, list) else [im0s] bs = [predictor.dataset.bs for _ in range(len(path))] predictor.results = zip(predictor.results, im0s, bs) model = YOLO(MODEL) model.add_callback('on_predict_batch_end', on_predict_batch_end) dataset = load_inference_source(source=SOURCE) bs = dataset.bs # noqa access predictor properties results = model.predict(dataset, stream=True, imgsz=160) # source already setup for r, im0, bs in results: print('test_callback', im0.shape) print('test_callback', bs) boxes = r.boxes # Boxes object for bbox outputs print(boxes) def test_results(): for m in 'yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt', 'yolov8n-cls.pt': results = YOLO(m)([SOURCE, SOURCE], imgsz=160) for r in results: r = r.cpu().numpy() r = r.to(device='cpu', dtype=torch.float32) r.save_txt(txt_file='runs/tests/label.txt', save_conf=True) r.save_crop(save_dir='runs/tests/crops/') r.tojson(normalize=True) r.plot(pil=True) r.plot(conf=True, boxes=True) print(r, len(r), r.path) @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_data_utils(): # Test functions in ultralytics/data/utils.py from ultralytics.data.utils import HUBDatasetStats, autosplit from ultralytics.utils.downloads import zip_directory # from ultralytics.utils.files import WorkingDirectory # with WorkingDirectory(ROOT.parent / 'tests'): for task in 'detect', 'segment', 'pose', 'classify': file = Path(TASK2DATA[task]).with_suffix('.zip') # i.e. coco8.zip download(f'https://github.com/ultralytics/hub/raw/main/example_datasets/{file}', unzip=False, dir=TMP) stats = HUBDatasetStats(TMP / file, task=task) stats.get_json(save=True) stats.process_images() autosplit(TMP / 'coco8') zip_directory(TMP / 'coco8/images/val') # zip @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_data_converter(): # Test dataset converters from ultralytics.data.converter import coco80_to_coco91_class, convert_coco file = 'instances_val2017.json' download(f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{file}', dir=TMP) convert_coco(labels_dir=TMP, use_segments=True, use_keypoints=False, cls91to80=True) coco80_to_coco91_class() def test_data_annotator(): from ultralytics.data.annotator import auto_annotate auto_annotate(ASSETS, det_model='yolov8n.pt', sam_model='mobile_sam.pt', output_dir=TMP / 'auto_annotate_labels') def test_events(): # Test event sending from ultralytics.hub.utils import Events events = Events() events.enabled = True cfg = copy(DEFAULT_CFG) # does not require deepcopy cfg.mode = 'test' events(cfg) def test_cfg_init(): from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value with contextlib.suppress(SyntaxError): check_dict_alignment({'a': 1}, {'b': 2}) copy_default_cfg() [smart_value(x) for x in ['none', 'true', 'false']] def test_utils_init(): from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_actions_ci get_ubuntu_version() is_github_actions_ci() get_git_origin_url() get_git_branch() def test_utils_checks(): from ultralytics.utils.checks import (check_imgsz, check_imshow, check_requirements, check_yolov5u_filename, git_describe, print_args) check_yolov5u_filename('yolov5n.pt') # check_imshow(warn=True) git_describe(ROOT) check_requirements() # check requirements.txt check_imgsz([600, 600], max_dim=1) check_imshow() print_args() def test_utils_benchmarks(): from ultralytics.utils.benchmarks import ProfileModels ProfileModels(['yolov8n.yaml'], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() def test_utils_torchutils(): from ultralytics.nn.modules.conv import Conv from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync x = torch.randn(1, 64, 20, 20) m = Conv(64, 64, k=1, s=2) profile(x, [m], n=3) get_flops_with_torch_profiler(m) time_sync() @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_utils_downloads(): from ultralytics.utils.downloads import get_google_drive_file_info get_google_drive_file_info('https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link') def test_utils_ops(): from ultralytics.utils.ops import (ltwh2xywh, ltwh2xyxy, make_divisible, xywh2ltwh, xywh2xyxy, xywhn2xyxy, xywhr2xyxyxyxy, xyxy2ltwh, xyxy2xywh, xyxy2xywhn, xyxyxyxy2xywhr) make_divisible(17, torch.tensor([8])) boxes = torch.rand(10, 4) # xywh torch.allclose(boxes, xyxy2xywh(xywh2xyxy(boxes))) torch.allclose(boxes, xyxy2xywhn(xywhn2xyxy(boxes))) torch.allclose(boxes, ltwh2xywh(xywh2ltwh(boxes))) torch.allclose(boxes, xyxy2ltwh(ltwh2xyxy(boxes))) boxes = torch.rand(10, 5) # xywhr for OBB boxes[:, 4] = torch.randn(10) * 30 torch.allclose(boxes, xyxyxyxy2xywhr(xywhr2xyxyxyxy(boxes)), rtol=1e-3) def test_utils_files(): from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path file_age(SOURCE) file_date(SOURCE) get_latest_run(ROOT / 'runs') path = TMP / 'path/with spaces' path.mkdir(parents=True, exist_ok=True) with spaces_in_path(path) as new_path: print(new_path) def test_nn_modules_conv(): from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus c1, c2 = 8, 16 # input and output channels x = torch.zeros(4, c1, 10, 10) # BCHW # Run all modules not otherwise covered in tests DWConvTranspose2d(c1, c2)(x) ConvTranspose(c1, c2)(x) Focus(c1, c2)(x) CBAM(c1)(x) # Fuse ops m = Conv2(c1, c2) m.fuse_convs() m(x) def test_nn_modules_block(): from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x c1, c2 = 8, 16 # input and output channels x = torch.zeros(4, c1, 10, 10) # BCHW # Run all modules not otherwise covered in tests C1(c1, c2)(x) C3x(c1, c2)(x) C3TR(c1, c2)(x) C3Ghost(c1, c2)(x) BottleneckCSP(c1, c2)(x) @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_hub(): from ultralytics.hub import export_fmts_hub, logout from ultralytics.hub.utils import smart_request export_fmts_hub() logout() smart_request('GET', 'http://github.com', progress=True)