# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib from pathlib import Path import pytest import torch from ultralytics import YOLO, download from ultralytics.utils import ASSETS, SETTINGS CUDA_IS_AVAILABLE = torch.cuda.is_available() CUDA_DEVICE_COUNT = torch.cuda.device_count() DATASETS_DIR = Path(SETTINGS['datasets_dir']) WEIGHTS_DIR = Path(SETTINGS['weights_dir']) MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path DATA = 'coco8.yaml' def test_checks(): from ultralytics.utils.checks import cuda_device_count, cuda_is_available assert cuda_device_count() == CUDA_DEVICE_COUNT assert cuda_is_available() == CUDA_IS_AVAILABLE @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_train(): device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1] YOLO(MODEL).train(data=DATA, imgsz=64, epochs=1, device=device) # requires imgsz>=64 @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_autobatch(): from ultralytics.utils.autobatch import check_train_batch_size check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True) @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_utils_benchmarks(): from ultralytics.utils.benchmarks import ProfileModels # Pre-export a dynamic engine model to use dynamic inference YOLO(MODEL).export(format='engine', imgsz=32, dynamic=True, batch=1) ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_predict_sam(): from ultralytics import SAM from ultralytics.models.sam import Predictor as SAMPredictor # Load a model model = SAM(WEIGHTS_DIR / 'sam_b.pt') # Display model information (optional) model.info() # Run inference model(ASSETS / 'bus.jpg', device=0) # Run inference with bboxes prompt model(ASSETS / 'zidane.jpg', bboxes=[439, 437, 524, 709], device=0) # Run inference with points prompt model(ASSETS / 'zidane.jpg', points=[900, 370], labels=[1], device=0) # Create SAMPredictor overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024, model='mobile_sam.pt') predictor = SAMPredictor(overrides=overrides) # Set image predictor.set_image('ultralytics/assets/zidane.jpg') # set with image file # predictor(bboxes=[439, 437, 524, 709]) # predictor(points=[900, 370], labels=[1]) # Reset image predictor.reset_image() @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_model_ray_tune(): with contextlib.suppress(RuntimeError): # RuntimeError may be caused by out-of-memory YOLO('yolov8n-cls.yaml').tune(use_ray=True, data='imagenet10', grace_period=1, iterations=1, imgsz=32, epochs=1, plots=False, device='cpu') @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_model_tune(): YOLO('yolov8n.pt').tune(data='coco8.yaml', imgsz=32, epochs=1, iterations=2, plots=False, device='cpu') @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_pycocotools(): from ultralytics.models.yolo.detect import DetectionValidator from ultralytics.models.yolo.pose import PoseValidator from ultralytics.models.yolo.segment import SegmentationValidator # Download annotations after each dataset downloads first url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/' validator = DetectionValidator(args={'model': 'yolov8n.pt', 'data': 'coco8.yaml', 'save_json': True, 'imgsz': 64}) validator() validator.is_coco = True download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8/annotations') _ = validator.eval_json(validator.stats) validator = SegmentationValidator(args={ 'model': 'yolov8n-seg.pt', 'data': 'coco8-seg.yaml', 'save_json': True, 'imgsz': 64}) validator() validator.is_coco = True download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8-seg/annotations') _ = validator.eval_json(validator.stats) validator = PoseValidator(args={ 'model': 'yolov8n-pose.pt', 'data': 'coco8-pose.yaml', 'save_json': True, 'imgsz': 64}) validator() validator.is_coco = True download(f'{url}person_keypoints_val2017.json', dir=DATASETS_DIR / 'coco8-pose/annotations') _ = validator.eval_json(validator.stats)