# Ultralytics YOLO 🚀, AGPL-3.0 license from ultralytics.engine.results import Results from ultralytics.models.yolo.detect.predict import DetectionPredictor from ultralytics.utils import DEFAULT_CFG, ops import torch def print_tensor_shapes(item, index_path=None): if index_path is None: index_path = [] # Initialize the index path for the top-level call if isinstance(item, torch.Tensor): # Print the index path and shape if the item is a tensor print(f"Tensor at Index Path {index_path}: Shape {item.shape}") elif isinstance(item, (list, tuple)): # Recursively call the function for nested lists and tuples for i, sub_item in enumerate(item): print_tensor_shapes(sub_item, index_path + [i]) else: # Print the type of the item if it is not a tensor, list, or tuple print(f"Item at Index Path {index_path} is not a tensor, list, or tuple. It is a {type(item)}.") class SegmentationPredictor(DetectionPredictor): """ A class extending the DetectionPredictor class for prediction based on a segmentation model. Example: ```python from ultralytics.utils import ASSETS from ultralytics.models.yolo.segment import SegmentationPredictor args = dict(model='yolov8n-seg.pt', source=ASSETS) predictor = SegmentationPredictor(overrides=args) predictor.predict_cli() ``` """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): super().__init__(cfg, overrides, _callbacks) self.args.task = 'segment' def postprocess(self, preds, img, orig_imgs): #print(preds[0].shape) regression_preds = preds[1][-1] p, final_reg = ops.non_max_suppression(prediction=preds[0], mask_coef = preds[1][1], proto = preds[1][-2], img_shape = img.shape[2:], conf_thres=self.args.conf, iou_thres=self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, nc=len(self.model.names), regression_var=regression_preds, classes=self.args.classes) #print(p[0].shape) results = [] is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor if len(preds[1])==3: proto = preds[1][-1] elif len(preds[1])==4: proto = preds[1][-2] else: proto = preds[1] #print(regression_preds.shape) for i, pred in enumerate(p): orig_img = orig_imgs[i] if is_list else orig_imgs img_path = self.batch[0][i] if not len(pred): # save empty boxes masks = None elif self.args.retina_masks: if is_list: pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC else: masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC if is_list: pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) #print(masks.shape) #print(final_reg[i].shape) results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks, regression_preds=final_reg[i])) return results