# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import DEFAULT_CFG class ClassificationPredictor(BasePredictor): """ A class extending the BasePredictor class for prediction based on a classification model. Notes: - Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. Example: ```python from ultralytics.utils import ASSETS from ultralytics.models.yolo.classify import ClassificationPredictor args = dict(model='yolov8n-cls.pt', source=ASSETS) predictor = ClassificationPredictor(overrides=args) predictor.predict_cli() ``` """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): super().__init__(cfg, overrides, _callbacks) self.args.task = 'classify' def preprocess(self, img): """Converts input image to model-compatible data type.""" if not isinstance(img, torch.Tensor): img = torch.stack([self.transforms(im) for im in img], dim=0) img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 def postprocess(self, preds, img, orig_imgs): """Post-processes predictions to return Results objects.""" results = [] is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor for i, pred in enumerate(preds): orig_img = orig_imgs[i] if is_list else orig_imgs img_path = self.batch[0][i] results.append(Results(orig_img, path=img_path, names=self.model.names, probs=pred)) return results