# Ultralytics YOLO 🚀, AGPL-3.0 license import math import random from copy import deepcopy import cv2 import numpy as np import torch import torchvision.transforms as T from ultralytics.utils import LOGGER, colorstr from ultralytics.utils.checks import check_version from ultralytics.utils.instance import Instances from ultralytics.utils.metrics import bbox_ioa from ultralytics.utils.ops import segment2box from .utils import polygons2masks, polygons2masks_overlap # TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic class BaseTransform: def __init__(self) -> None: pass def apply_image(self, labels): """Applies image transformation to labels.""" pass def apply_instances(self, labels): """Applies transformations to input 'labels' and returns object instances.""" pass def apply_semantic(self, labels): """Applies semantic segmentation to an image.""" pass def __call__(self, labels): """Applies label transformations to an image, instances and semantic masks.""" self.apply_image(labels) self.apply_instances(labels) self.apply_semantic(labels) class Compose: def __init__(self, transforms): """Initializes the Compose object with a list of transforms.""" self.transforms = transforms def __call__(self, data): """Applies a series of transformations to input data.""" for t in self.transforms: data = t(data) return data def append(self, transform): """Appends a new transform to the existing list of transforms.""" self.transforms.append(transform) def tolist(self): """Converts list of transforms to a standard Python list.""" return self.transforms def __repr__(self): """Return string representation of object.""" format_string = f'{self.__class__.__name__}(' for t in self.transforms: format_string += '\n' format_string += f' {t}' format_string += '\n)' return format_string class BaseMixTransform: """This implementation is from mmyolo.""" def __init__(self, dataset, pre_transform=None, p=0.0) -> None: self.dataset = dataset self.pre_transform = pre_transform self.p = p def __call__(self, labels): """Applies pre-processing transforms and mixup/mosaic transforms to labels data.""" if random.uniform(0, 1) > self.p: return labels # Get index of one or three other images indexes = self.get_indexes() if isinstance(indexes, int): indexes = [indexes] # Get images information will be used for Mosaic or MixUp mix_labels = [self.dataset.get_image_and_label(i) for i in indexes] if self.pre_transform is not None: for i, data in enumerate(mix_labels): mix_labels[i] = self.pre_transform(data) labels['mix_labels'] = mix_labels # Mosaic or MixUp labels = self._mix_transform(labels) labels.pop('mix_labels', None) return labels def _mix_transform(self, labels): """Applies MixUp or Mosaic augmentation to the label dictionary.""" raise NotImplementedError def get_indexes(self): """Gets a list of shuffled indexes for mosaic augmentation.""" raise NotImplementedError class Mosaic(BaseMixTransform): """ Mosaic augmentation. This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. The augmentation is applied to a dataset with a given probability. Attributes: dataset: The dataset on which the mosaic augmentation is applied. imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640. p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0. n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3). """ def __init__(self, dataset, imgsz=640, p=1.0, n=4): """Initializes the object with a dataset, image size, probability, and border.""" assert 0 <= p <= 1.0, f'The probability should be in range [0, 1], but got {p}.' assert n in (4, 9), 'grid must be equal to 4 or 9.' super().__init__(dataset=dataset, p=p) self.dataset = dataset self.imgsz = imgsz self.border = (-imgsz // 2, -imgsz // 2) # width, height self.n = n def get_indexes(self, buffer=True): """Return a list of random indexes from the dataset.""" if buffer: # select images from buffer return random.choices(list(self.dataset.buffer), k=self.n - 1) else: # select any images return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)] def _mix_transform(self, labels): """Apply mixup transformation to the input image and labels.""" assert labels.get('rect_shape', None) is None, 'rect and mosaic are mutually exclusive.' assert len(labels.get('mix_labels', [])), 'There are no other images for mosaic augment.' return self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels) def _mosaic4(self, labels): """Create a 2x2 image mosaic.""" mosaic_labels = [] s = self.imgsz yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y for i in range(4): labels_patch = labels if i == 0 else labels['mix_labels'][i - 1] # Load image img = labels_patch['img'] h, w = labels_patch.pop('resized_shape') # Place img in img4 if i == 0: # top left img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] padw = x1a - x1b padh = y1a - y1b labels_patch = self._update_labels(labels_patch, padw, padh) mosaic_labels.append(labels_patch) final_labels = self._cat_labels(mosaic_labels) final_labels['img'] = img4 return final_labels def _mosaic9(self, labels): """Create a 3x3 image mosaic.""" mosaic_labels = [] s = self.imgsz hp, wp = -1, -1 # height, width previous for i in range(9): labels_patch = labels if i == 0 else labels['mix_labels'][i - 1] # Load image img = labels_patch['img'] h, w = labels_patch.pop('resized_shape') # Place img in img9 if i == 0: # center img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles h0, w0 = h, w c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates elif i == 1: # top c = s, s - h, s + w, s elif i == 2: # top right c = s + wp, s - h, s + wp + w, s elif i == 3: # right c = s + w0, s, s + w0 + w, s + h elif i == 4: # bottom right c = s + w0, s + hp, s + w0 + w, s + hp + h elif i == 5: # bottom c = s + w0 - w, s + h0, s + w0, s + h0 + h elif i == 6: # bottom left c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h elif i == 7: # left c = s - w, s + h0 - h, s, s + h0 elif i == 8: # top left c = s - w, s + h0 - hp - h, s, s + h0 - hp padw, padh = c[:2] x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords # Image img9[y1:y2, x1:x2] = img[y1 - padh:, x1 - padw:] # img9[ymin:ymax, xmin:xmax] hp, wp = h, w # height, width previous for next iteration # Labels assuming imgsz*2 mosaic size labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) mosaic_labels.append(labels_patch) final_labels = self._cat_labels(mosaic_labels) final_labels['img'] = img9[-self.border[0]:self.border[0], -self.border[1]:self.border[1]] return final_labels @staticmethod def _update_labels(labels, padw, padh): """Update labels.""" nh, nw = labels['img'].shape[:2] labels['instances'].convert_bbox(format='xyxy') labels['instances'].denormalize(nw, nh) labels['instances'].add_padding(padw, padh) return labels def _cat_labels(self, mosaic_labels): """Return labels with mosaic border instances clipped.""" if len(mosaic_labels) == 0: return {} cls = [] instances = [] imgsz = self.imgsz * 2 # mosaic imgsz for labels in mosaic_labels: cls.append(labels['cls']) instances.append(labels['instances']) final_labels = { 'im_file': mosaic_labels[0]['im_file'], 'ori_shape': mosaic_labels[0]['ori_shape'], 'resized_shape': (imgsz, imgsz), 'cls': np.concatenate(cls, 0), 'instances': Instances.concatenate(instances, axis=0), 'mosaic_border': self.border} # final_labels final_labels['instances'].clip(imgsz, imgsz) good = final_labels['instances'].remove_zero_area_boxes() final_labels['cls'] = final_labels['cls'][good] return final_labels class MixUp(BaseMixTransform): def __init__(self, dataset, pre_transform=None, p=0.0) -> None: super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) def get_indexes(self): """Get a random index from the dataset.""" return random.randint(0, len(self.dataset) - 1) def _mix_transform(self, labels): """Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf.""" r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 labels2 = labels['mix_labels'][0] labels['img'] = (labels['img'] * r + labels2['img'] * (1 - r)).astype(np.uint8) labels['instances'] = Instances.concatenate([labels['instances'], labels2['instances']], axis=0) labels['cls'] = np.concatenate([labels['cls'], labels2['cls']], 0) return labels class RandomPerspective: def __init__(self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None): self.degrees = degrees self.translate = translate self.scale = scale self.shear = shear self.perspective = perspective # Mosaic border self.border = border self.pre_transform = pre_transform def affine_transform(self, img, border): """Center.""" C = np.eye(3, dtype=np.float32) C[0, 2] = -img.shape[1] / 2 # x translation (pixels) C[1, 2] = -img.shape[0] / 2 # y translation (pixels) # Perspective P = np.eye(3, dtype=np.float32) P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y) P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x) # Rotation and Scale R = np.eye(3, dtype=np.float32) a = random.uniform(-self.degrees, self.degrees) # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations s = random.uniform(1 - self.scale, 1 + self.scale) # s = 2 ** random.uniform(-scale, scale) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) # Shear S = np.eye(3, dtype=np.float32) S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg) # Translation T = np.eye(3, dtype=np.float32) T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels) T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels) # Combined rotation matrix M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT # Affine image if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed if self.perspective: img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114)) else: # affine img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114)) return img, M, s def apply_bboxes(self, bboxes, M): """ Apply affine to bboxes only. Args: bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4). M (ndarray): affine matrix. Returns: new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4]. """ n = len(bboxes) if n == 0: return bboxes xy = np.ones((n * 4, 3), dtype=bboxes.dtype) xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = xy @ M.T # transform xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine # Create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T def apply_segments(self, segments, M): """ Apply affine to segments and generate new bboxes from segments. Args: segments (ndarray): list of segments, [num_samples, 500, 2]. M (ndarray): affine matrix. Returns: new_segments (ndarray): list of segments after affine, [num_samples, 500, 2]. new_bboxes (ndarray): bboxes after affine, [N, 4]. """ n, num = segments.shape[:2] if n == 0: return [], segments xy = np.ones((n * num, 3), dtype=segments.dtype) segments = segments.reshape(-1, 2) xy[:, :2] = segments xy = xy @ M.T # transform xy = xy[:, :2] / xy[:, 2:3] segments = xy.reshape(n, -1, 2) bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0) return bboxes, segments def apply_keypoints(self, keypoints, M): """ Apply affine to keypoints. Args: keypoints (ndarray): keypoints, [N, 17, 3]. M (ndarray): affine matrix. Returns: new_keypoints (ndarray): keypoints after affine, [N, 17, 3]. """ n, nkpt = keypoints.shape[:2] if n == 0: return keypoints xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype) visible = keypoints[..., 2].reshape(n * nkpt, 1) xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2) xy = xy @ M.T # transform xy = xy[:, :2] / xy[:, 2:3] # perspective rescale or affine out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1]) visible[out_mask] = 0 return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3) def __call__(self, labels): """ Affine images and targets. Args: labels (dict): a dict of `bboxes`, `segments`, `keypoints`. """ if self.pre_transform and 'mosaic_border' not in labels: labels = self.pre_transform(labels) labels.pop('ratio_pad', None) # do not need ratio pad img = labels['img'] cls = labels['cls'] instances = labels.pop('instances') # Make sure the coord formats are right instances.convert_bbox(format='xyxy') instances.denormalize(*img.shape[:2][::-1]) border = labels.pop('mosaic_border', self.border) self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 # w, h # M is affine matrix # scale for func:`box_candidates` img, M, scale = self.affine_transform(img, border) bboxes = self.apply_bboxes(instances.bboxes, M) segments = instances.segments keypoints = instances.keypoints # Update bboxes if there are segments. if len(segments): bboxes, segments = self.apply_segments(segments, M) if keypoints is not None: keypoints = self.apply_keypoints(keypoints, M) new_instances = Instances(bboxes, segments, keypoints, bbox_format='xyxy', normalized=False) # Clip new_instances.clip(*self.size) # Filter instances instances.scale(scale_w=scale, scale_h=scale, bbox_only=True) # Make the bboxes have the same scale with new_bboxes i = self.box_candidates(box1=instances.bboxes.T, box2=new_instances.bboxes.T, area_thr=0.01 if len(segments) else 0.10) labels['instances'] = new_instances[i] labels['cls'] = cls[i] labels['img'] = img labels['resized_shape'] = img.shape[:2] return labels def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) # Compute box candidates: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio w1, h1 = box1[2] - box1[0], box1[3] - box1[1] w2, h2 = box2[2] - box2[0], box2[3] - box2[1] ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates class RandomHSV: def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None: self.hgain = hgain self.sgain = sgain self.vgain = vgain def __call__(self, labels): """Applies image HSV augmentation""" img = labels['img'] if self.hgain or self.sgain or self.vgain: r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) dtype = img.dtype # uint8 x = np.arange(0, 256, dtype=r.dtype) lut_hue = ((x * r[0]) % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed return labels class RandomFlip: """Applies random horizontal or vertical flip to an image with a given probability.""" def __init__(self, p=0.5, direction='horizontal', flip_idx=None) -> None: assert direction in ['horizontal', 'vertical'], f'Support direction `horizontal` or `vertical`, got {direction}' assert 0 <= p <= 1.0 self.p = p self.direction = direction self.flip_idx = flip_idx def __call__(self, labels): """Resize image and padding for detection, instance segmentation, pose.""" img = labels['img'] instances = labels.pop('instances') instances.convert_bbox(format='xywh') h, w = img.shape[:2] h = 1 if instances.normalized else h w = 1 if instances.normalized else w # Flip up-down if self.direction == 'vertical' and random.random() < self.p: img = np.flipud(img) instances.flipud(h) if self.direction == 'horizontal' and random.random() < self.p: img = np.fliplr(img) instances.fliplr(w) # For keypoints if self.flip_idx is not None and instances.keypoints is not None: instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :]) labels['img'] = np.ascontiguousarray(img) labels['instances'] = instances return labels class LetterBox: """Resize image and padding for detection, instance segmentation, pose.""" def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32): """Initialize LetterBox object with specific parameters.""" self.new_shape = new_shape self.auto = auto self.scaleFill = scaleFill self.scaleup = scaleup self.stride = stride self.center = center # Put the image in the middle or top-left def __call__(self, labels=None, image=None): """Return updated labels and image with added border.""" if labels is None: labels = {} img = labels.get('img') if image is None else image shape = img.shape[:2] # current shape [height, width] new_shape = labels.pop('rect_shape', self.new_shape) if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not self.scaleup: # only scale down, do not scale up (for better val mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if self.auto: # minimum rectangle dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding elif self.scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios if self.center: dw /= 2 # divide padding into 2 sides dh /= 2 if labels.get('ratio_pad'): labels['ratio_pad'] = (labels['ratio_pad'], (dw, dh)) # for evaluation if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)) # add border if len(labels): labels = self._update_labels(labels, ratio, dw, dh) labels['img'] = img labels['resized_shape'] = new_shape return labels else: return img def _update_labels(self, labels, ratio, padw, padh): """Update labels.""" labels['instances'].convert_bbox(format='xyxy') labels['instances'].denormalize(*labels['img'].shape[:2][::-1]) labels['instances'].scale(*ratio) labels['instances'].add_padding(padw, padh) return labels class CopyPaste: def __init__(self, p=0.5) -> None: self.p = p def __call__(self, labels): """Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy).""" im = labels['img'] cls = labels['cls'] h, w = im.shape[:2] instances = labels.pop('instances') instances.convert_bbox(format='xyxy') instances.denormalize(w, h) if self.p and len(instances.segments): n = len(instances) _, w, _ = im.shape # height, width, channels im_new = np.zeros(im.shape, np.uint8) # Calculate ioa first then select indexes randomly ins_flip = deepcopy(instances) ins_flip.fliplr(w) ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M) indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) n = len(indexes) for j in random.sample(list(indexes), k=round(self.p * n)): cls = np.concatenate((cls, cls[[j]]), axis=0) instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) result = cv2.flip(im, 1) # augment segments (flip left-right) i = cv2.flip(im_new, 1).astype(bool) im[i] = result[i] labels['img'] = im labels['cls'] = cls labels['instances'] = instances return labels class Albumentations: """Albumentations transformations. Optional, uninstall package to disable. Applies Blur, Median Blur, convert to grayscale, Contrast Limited Adaptive Histogram Equalization, random change of brightness and contrast, RandomGamma and lowering of image quality by compression.""" def __init__(self, p=1.0): """Initialize the transform object for YOLO bbox formatted params.""" self.p = p self.transform = None prefix = colorstr('albumentations: ') try: import albumentations as A check_version(A.__version__, '1.0.3', hard=True) # version requirement T = [ A.Blur(p=0.01), A.MedianBlur(p=0.01), A.ToGray(p=0.01), A.CLAHE(p=0.01), A.RandomBrightnessContrast(p=0.0), A.RandomGamma(p=0.0), # A.PixelDropout(dropout_prob=0.005,drop_value=0, p=1.0), #A.ElasticTransform(p=0.1,sigma=25,alpha=400,alpha_affine=0,border_mode=0,value=[255,255,255],mask_value=[255,255,255],same_dxdy=True), #A.GridDistortion(p=1,num_steps=35,distort_limit = 0.5,border_mode=0,value=[255,255,255],mask_value = [255,255,255],normalized=False,interpolation = cv2.INTER_CUBIC), #A.ImageCompression(quality_lower=75, p=0.1) ] # transforms self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'])) LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) except ImportError: # package not installed, skip pass except Exception as e: LOGGER.info(f'{prefix}{e}') def __call__(self, labels): """Generates object detections and returns a dictionary with detection results.""" im = labels['img'] cls = labels['cls'] if len(cls): labels['instances'].convert_bbox('xywh') labels['instances'].normalize(*im.shape[:2][::-1]) bboxes = labels['instances'].bboxes # TODO: add supports of segments and keypoints if self.transform and random.random() < self.p: new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed if len(new['class_labels']) > 0: # skip update if no bbox in new im labels['img'] = new['image'] labels['cls'] = np.array(new['class_labels']) bboxes = np.array(new['bboxes'], dtype=np.float32) labels['instances'].update(bboxes=bboxes) return labels # TODO: technically this is not an augmentation, maybe we should put this to another files class Format: def __init__(self, bbox_format='xywh', normalize=True, return_mask=False, return_keypoint=False, mask_ratio=4, mask_overlap=True, batch_idx=True): self.bbox_format = bbox_format self.normalize = normalize self.return_mask = return_mask # set False when training detection only self.return_keypoint = return_keypoint self.mask_ratio = mask_ratio self.mask_overlap = mask_overlap self.batch_idx = batch_idx # keep the batch indexes def __call__(self, labels): """Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'.""" img = labels.pop('img') h, w = img.shape[:2] cls = labels.pop('cls') instances = labels.pop('instances') instances.convert_bbox(format=self.bbox_format) instances.denormalize(w, h) nl = len(instances) if self.return_mask: if nl: masks, instances, cls = self._format_segments(instances, cls, w, h) masks = torch.from_numpy(masks) else: masks = torch.zeros(1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio) labels['masks'] = masks if self.normalize: instances.normalize(w, h) labels['img'] = self._format_img(img) labels['cls'] = torch.from_numpy(cls) if nl else torch.zeros(nl) labels['bboxes'] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4)) if self.return_keypoint: labels['keypoints'] = torch.from_numpy(instances.keypoints) # Then we can use collate_fn if self.batch_idx: labels['batch_idx'] = torch.zeros(nl) return labels def _format_img(self, img): """Format the image for YOLOv5 from Numpy array to PyTorch tensor.""" if len(img.shape) < 3: img = np.expand_dims(img, -1) img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1]) img = torch.from_numpy(img) return img def _format_segments(self, instances, cls, w, h): """convert polygon points to bitmap.""" segments = instances.segments if self.mask_overlap: masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio) masks = masks[None] # (640, 640) -> (1, 640, 640) instances = instances[sorted_idx] cls = cls[sorted_idx] else: masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio) return masks, instances, cls def v8_transforms(dataset, imgsz, hyp, stretch=False): """Convert images to a size suitable for YOLOv8 training.""" pre_transform = Compose([ Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), CopyPaste(p=hyp.copy_paste), RandomPerspective( degrees=hyp.degrees, translate=hyp.translate, scale=hyp.scale, shear=hyp.shear, perspective=hyp.perspective, pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)), )]) flip_idx = dataset.data.get('flip_idx', []) # for keypoints augmentation if dataset.use_keypoints: kpt_shape = dataset.data.get('kpt_shape', None) if len(flip_idx) == 0 and hyp.fliplr > 0.0: hyp.fliplr = 0.0 LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'") elif flip_idx and (len(flip_idx) != kpt_shape[0]): raise ValueError(f'data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}') return Compose([ pre_transform, MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup), Albumentations(p=1.0), RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), RandomFlip(direction='vertical', p=hyp.flipud), RandomFlip(direction='horizontal', p=hyp.fliplr, flip_idx=flip_idx)]) # transforms # Classification augmentations ----------------------------------------------------------------------------------------- def classify_transforms(size=224, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)): # IMAGENET_MEAN, IMAGENET_STD # Transforms to apply if albumentations not installed if not isinstance(size, int): raise TypeError(f'classify_transforms() size {size} must be integer, not (list, tuple)') if any(mean) or any(std): return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(mean, std, inplace=True)]) else: return T.Compose([CenterCrop(size), ToTensor()]) def hsv2colorjitter(h, s, v): """Map HSV (hue, saturation, value) jitter into ColorJitter values (brightness, contrast, saturation, hue)""" return v, v, s, h def classify_albumentations( augment=True, size=224, scale=(0.08, 1.0), hflip=0.5, vflip=0.0, hsv_h=0.015, # image HSV-Hue augmentation (fraction) hsv_s=0.7, # image HSV-Saturation augmentation (fraction) hsv_v=0.4, # image HSV-Value augmentation (fraction) mean=(0.0, 0.0, 0.0), # IMAGENET_MEAN std=(1.0, 1.0, 1.0), # IMAGENET_STD auto_aug=False, ): """YOLOv8 classification Albumentations (optional, only used if package is installed).""" prefix = colorstr('albumentations: ') try: import albumentations as A from albumentations.pytorch import ToTensorV2 check_version(A.__version__, '1.0.3', hard=True) # version requirement if augment: # Resize and crop T = [A.RandomResizedCrop(height=size, width=size, scale=scale)] if auto_aug: # TODO: implement AugMix, AutoAug & RandAug in albumentations LOGGER.info(f'{prefix}auto augmentations are currently not supported') else: if hflip > 0: T += [A.HorizontalFlip(p=hflip)] if vflip > 0: T += [A.VerticalFlip(p=vflip)] if any((hsv_h, hsv_s, hsv_v)): T += [A.ColorJitter(*hsv2colorjitter(hsv_h, hsv_s, hsv_v))] # brightness, contrast, saturation, hue else: # Use fixed crop for eval set (reproducibility) T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) return A.Compose(T) except ImportError: # package not installed, skip pass except Exception as e: LOGGER.info(f'{prefix}{e}') class ClassifyLetterBox: """YOLOv8 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])""" def __init__(self, size=(640, 640), auto=False, stride=32): """Resizes image and crops it to center with max dimensions 'h' and 'w'.""" super().__init__() self.h, self.w = (size, size) if isinstance(size, int) else size self.auto = auto # pass max size integer, automatically solve for short side using stride self.stride = stride # used with auto def __call__(self, im): # im = np.array HWC imh, imw = im.shape[:2] r = min(self.h / imh, self.w / imw) # ratio of new/old h, w = round(imh * r), round(imw * r) # resized image hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) return im_out class CenterCrop: """YOLOv8 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])""" def __init__(self, size=640): """Converts an image from numpy array to PyTorch tensor.""" super().__init__() self.h, self.w = (size, size) if isinstance(size, int) else size def __call__(self, im): # im = np.array HWC imh, imw = im.shape[:2] m = min(imh, imw) # min dimension top, left = (imh - m) // 2, (imw - m) // 2 return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) class ToTensor: """YOLOv8 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]).""" def __init__(self, half=False): """Initialize YOLOv8 ToTensor object with optional half-precision support.""" super().__init__() self.half = half def __call__(self, im): # im = np.array HWC in BGR order im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous im = torch.from_numpy(im) # to torch im = im.half() if self.half else im.float() # uint8 to fp16/32 im /= 255.0 # 0-255 to 0.0-1.0 return im