# Ultralytics YOLO 🚀, AGPL-3.0 license # YOLOv8-pose-p6 keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose # Parameters nc: 1 # number of classes kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n' # [depth, width, max_channels] n: [0.33, 0.25, 1024] s: [0.33, 0.50, 1024] m: [0.67, 0.75, 768] l: [1.00, 1.00, 512] x: [1.00, 1.25, 512] # YOLOv8.0x6 backbone backbone: # [from, repeats, module, args] - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 - [-1, 3, C2f, [128, True]] - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 - [-1, 6, C2f, [256, True]] - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 - [-1, 6, C2f, [512, True]] - [-1, 1, Conv, [768, 3, 2]] # 7-P5/32 - [-1, 3, C2f, [768, True]] - [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64 - [-1, 3, C2f, [1024, True]] - [-1, 1, SPPF, [1024, 5]] # 11 # YOLOv8.0x6 head head: - [-1, 1, nn.Upsample, [None, 2, 'nearest']] - [[-1, 8], 1, Concat, [1]] # cat backbone P5 - [-1, 3, C2, [768, False]] # 14 - [-1, 1, nn.Upsample, [None, 2, 'nearest']] - [[-1, 6], 1, Concat, [1]] # cat backbone P4 - [-1, 3, C2, [512, False]] # 17 - [-1, 1, nn.Upsample, [None, 2, 'nearest']] - [[-1, 4], 1, Concat, [1]] # cat backbone P3 - [-1, 3, C2, [256, False]] # 20 (P3/8-small) - [-1, 1, Conv, [256, 3, 2]] - [[-1, 17], 1, Concat, [1]] # cat head P4 - [-1, 3, C2, [512, False]] # 23 (P4/16-medium) - [-1, 1, Conv, [512, 3, 2]] - [[-1, 14], 1, Concat, [1]] # cat head P5 - [-1, 3, C2, [768, False]] # 26 (P5/32-large) - [-1, 1, Conv, [768, 3, 2]] - [[-1, 11], 1, Concat, [1]] # cat head P6 - [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge) - [[20, 23, 26, 29], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5, P6)