# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib import math import re import time import cv2 import numpy as np import torch import torch.nn.functional as F import torchvision from torch.nn import CosineSimilarity from ultralytics.utils import LOGGER class Profile(contextlib.ContextDecorator): """ YOLOv8 Profile class. Use as a decorator with @Profile() or as a context manager with 'with Profile():'. Example: ```python from ultralytics.utils.ops import Profile with Profile() as dt: pass # slow operation here print(dt) # prints "Elapsed time is 9.5367431640625e-07 s" ``` """ def __init__(self, t=0.0): """ Initialize the Profile class. Args: t (float): Initial time. Defaults to 0.0. """ self.t = t self.cuda = torch.cuda.is_available() def __enter__(self): """Start timing.""" self.start = self.time() return self def __exit__(self, type, value, traceback): # noqa """Stop timing.""" self.dt = self.time() - self.start # delta-time self.t += self.dt # accumulate dt def __str__(self): return f'Elapsed time is {self.t} s' def time(self): """Get current time.""" if self.cuda: torch.cuda.synchronize() return time.time() def segment2box(segment, width=640, height=640): """ Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy). Args: segment (torch.Tensor): the segment label width (int): the width of the image. Defaults to 640 height (int): The height of the image. Defaults to 640 Returns: (np.ndarray): the minimum and maximum x and y values of the segment. """ # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) x, y = segment.T # segment xy inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) x, y, = x[inside], y[inside] return np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype) if any(x) else np.zeros( 4, dtype=segment.dtype) # xyxy def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None, padding=True): """ Rescales bounding boxes (in the format of xyxy) from the shape of the image they were originally specified in (img1_shape) to the shape of a different image (img0_shape). Args: img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width). boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2) img0_shape (tuple): the shape of the target image, in the format of (height, width). ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be calculated based on the size difference between the two images. padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular rescaling. Returns: boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2) """ if ratio_pad is None: # calculate from img0_shape gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new pad = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1), round( (img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1) # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] if padding: boxes[..., [0, 2]] -= pad[0] # x padding boxes[..., [1, 3]] -= pad[1] # y padding boxes[..., :4] /= gain clip_boxes(boxes, img0_shape) return boxes def make_divisible(x, divisor): """ Returns the nearest number that is divisible by the given divisor. Args: x (int): The number to make divisible. divisor (int | torch.Tensor): The divisor. Returns: (int): The nearest number divisible by the divisor. """ if isinstance(divisor, torch.Tensor): divisor = int(divisor.max()) # to int return math.ceil(x / divisor) * divisor def downsample_masks(masks, scale_factor=1.0): # Assuming masks are in (N, H, W) format downsampled_masks = torch.nn.functional.interpolate(masks.float().unsqueeze(1), scale_factor=scale_factor, mode='bilinear', align_corners=False).squeeze(1) return downsampled_masks.bool() def custom_nms(iou_matrix, conf, iou_threshold): conf_1d = conf.squeeze() sorted_indices = conf_1d.argsort(descending=True) keep = [] suppressed = torch.zeros(conf.size(0), dtype=torch.bool, device=conf.device) # Ensure suppressed is 1D for idx in sorted_indices: if suppressed[idx]: continue # Skip if already suppressed keep.append(idx.item()) # Add the current index to keep # Suppress the masks with high IoU with the current mask, ensuring shapes match for in-place operation suppressed |= (iou_matrix[idx] > iou_threshold).squeeze() # Make sure the current mask is not suppressed by resetting its flag suppressed[idx] = False keep_indices = torch.tensor(keep, device=iou_matrix.device) # Convert kept indices to a tensor return keep_indices def non_max_suppression( prediction, mask_coef=None, proto=None, img_shape = None, regression_var = None, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, labels=(), max_det=300, nc=0, # number of classes (optional) max_time_img=60.0, max_nms=30000, max_wh=7680, ): """ Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box. Args: prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes) containing the predicted boxes, classes, and masks. The tensor should be in the format output by a model, such as YOLO. conf_thres (float): The confidence threshold below which boxes will be filtered out. Valid values are between 0.0 and 1.0. iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS. Valid values are between 0.0 and 1.0. classes (List[int]): A list of class indices to consider. If None, all classes will be considered. agnostic (bool): If True, the model is agnostic to the number of classes, and all classes will be considered as one. multi_label (bool): If True, each box may have multiple labels. labels (List[List[Union[int, float, torch.Tensor]]]): A list of lists, where each inner list contains the apriori labels for a given image. The list should be in the format output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2). max_det (int): The maximum number of boxes to keep after NMS. nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks. max_time_img (float): The maximum time (seconds) for processing one image. max_nms (int): The maximum number of boxes into torchvision.ops.nms(). max_wh (int): The maximum box width and height in pixels Returns: (List[torch.Tensor]): A list of length batch_size, where each element is a tensor of shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns (x1, y1, x2, y2, confidence, class, mask1, mask2, ...). """ # Checks assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out) prediction = prediction[0] # select only inference output device = prediction.device mps = 'mps' in device.type # Apple MPS if mps: # MPS not fully supported yet, convert tensors to CPU before NMS prediction = prediction.cpu() bs = prediction.shape[0] # batch size nc = nc or (prediction.shape[1] - 4) # number of classes nm = prediction.shape[1] - nc - 4 mi = 4 + nc # mask start index xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates # Settings # min_wh = 2 # (pixels) minimum box width and height time_limit = 0.5 + max_time_img * bs # seconds to quit after multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) prediction = prediction.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84) prediction[..., :4] = xywh2xyxy(prediction[..., :4]) # xywh to xyxy t = time.time() output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs if regression_var is not None: saved_reg_var = [torch.zeros((0, 6), device=prediction.device)] * bs regression_var = regression_var.transpose(-1, -2) for xi, x in enumerate(prediction): # image index, image inference # Apply constraints # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence # confident_mask = mask_coefficient # Cat apriori labels if autolabelling if labels and len(labels[xi]): lb = labels[xi] v = torch.zeros((len(lb), nc + nm + 4), device=x.device) v[:, :4] = xywh2xyxy(lb[:, 1:5]) # box v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls x = torch.cat((x, v), 0) # If none remain process next image if not x.shape[0]: continue # Detections matrix nx6 (xyxy, conf, cls) box, cls, mask = x.split((4, nc, nm), 1) if multi_label: i, j = torch.where(cls > conf_thres) x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1) else: # best class only conf, j = cls.max(1, keepdim=True) x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres] # Filter by class if classes is not None: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Check shape n = x.shape[0] # number of boxes if not n: # no boxes continue if n > max_nms: # excess boxes x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores # mask_coef = None if mask_coef is not None: ih, iw = img_shape mask_coefficient = mask_coef[xi] filtered_mask_coefficient = mask_coefficient[:, xc.squeeze()] prototype = proto c, mh, mw = prototype.shape[-3:] # CHW masks = (filtered_mask_coefficient.T @ prototype.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW mask_coefficient = mask_coef[xi].detach() filtered_mask_coefficient = mask_coefficient[:, xc.squeeze()].detach() #filtered_mask_coefficient = filtered_mask_coefficient[:, kept_indices].detach() #conf = conf[kept_indices].detach() #masks = masks[kept_indices].detach() downsampled_bboxes = boxes.clone().detach() #downsampled_bboxes = boxes[kept_indices].clone().detach() downsampled_bboxes[:, 0] *= mw / iw downsampled_bboxes[:, 2] *= mw / iw downsampled_bboxes[:, 3] *= mh / ih downsampled_bboxes[:, 1] *= mh / ih masks = crop_mask(masks, downsampled_bboxes) # CHW masks.gt_(0.5) # threshold masks: #masks = (masks > 0.5).float() downsampled_masks_bool = downsample_masks(masks, scale_factor=1.0).detach() # Ensure masks are boolean and detach to avoid saving gradients masks_bool = downsampled_masks_bool.detach() # Assuming downsampled_masks_bool is already defined batch_size = 5 # Adjust based on your GPU memory and the size of masks_bool num_masks = masks_bool.size(0) intersections = [] unions = [] min_areas = [] # To store minimum areas for IoMin calculation dices = [] # To store Dice Coefficients for batch_start in range(0, num_masks, batch_size): batch_end = min(batch_start + batch_size, num_masks) masks_bool_batch = masks_bool[batch_start:batch_end] # Compute intersection and union for the current batch intersection_batch = (masks_bool_batch.unsqueeze(1) & masks_bool.unsqueeze(0)).float().sum(dim=(-1, -2)) union_batch = (masks_bool_batch.unsqueeze(1) | masks_bool.unsqueeze(0)).float().sum(dim=(-1, -2)) # Calculate areas for IoMin area_batch = masks_bool_batch.float().sum(dim=(-1, -2)).unsqueeze(1) # Areas of masks in the current batch area_all = masks_bool.float().sum(dim=(-1, -2)).unsqueeze(0) # Areas of all masks min_area_batch = torch.min(area_batch, area_all) # Find the minimum area between each pair of masks # Calculate Dice Coefficient for the current batch dice_batch = (2 * intersection_batch) / (area_batch + area_all) intersections.append(intersection_batch) unions.append(union_batch) min_areas.append(min_area_batch) dices.append(dice_batch) # Append the calculated Dice Coefficients # Concatenate the results from each batch intersection = torch.cat(intersections, dim=0) union = torch.cat(unions, dim=0) min_area = torch.cat(min_areas, dim=0) dice = torch.cat(dices, dim=0) # Concatenate all Dice Coefficients # Compute IoMin by dividing intersection by the minimum area, handle division by zero iou = intersection / union iomin = intersection / min_area iomin[min_area == 0] = 0 # Handle division by zero, if any iou = iou.detach() kept_indices = custom_nms(dice, conf, iou_thres) # Map the IOU kept indices back to the original set #original_indices_iou = kept_indices_cosine[kept_indices_iou].detach() # Explicitly delete large unused tensors and call garbage collection to free up memory del masks, downsampled_masks_bool, intersection, union, iou import gc gc.collect() # Ensure CUDA cache is cleared, potentially freeing up unused memory torch.cuda.empty_cache() i = kept_indices else: i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS i = i[:max_det] # limit detections if regression_var is not None: filtered_reg = regression_var[xi][xc[xi]] saved_reg_var[xi] = filtered_reg[i] output[xi] = x[i] if mps: output[xi] = output[xi].to(device) if (time.time() - t) > time_limit: LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded') break # time limit exceeded if regression_var is not None: return output, saved_reg_var else: return output def clip_boxes(boxes, shape): """ Takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the shape. Args: boxes (torch.Tensor): the bounding boxes to clip shape (tuple): the shape of the image """ if isinstance(boxes, torch.Tensor): # faster individually boxes[..., 0].clamp_(0, shape[1]) # x1 boxes[..., 1].clamp_(0, shape[0]) # y1 boxes[..., 2].clamp_(0, shape[1]) # x2 boxes[..., 3].clamp_(0, shape[0]) # y2 else: # np.array (faster grouped) boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2 boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2 def clip_coords(coords, shape): """ Clip line coordinates to the image boundaries. Args: coords (torch.Tensor | numpy.ndarray): A list of line coordinates. shape (tuple): A tuple of integers representing the size of the image in the format (height, width). Returns: (None): The function modifies the input `coordinates` in place, by clipping each coordinate to the image boundaries. """ if isinstance(coords, torch.Tensor): # faster individually coords[..., 0].clamp_(0, shape[1]) # x coords[..., 1].clamp_(0, shape[0]) # y else: # np.array (faster grouped) coords[..., 0] = coords[..., 0].clip(0, shape[1]) # x coords[..., 1] = coords[..., 1].clip(0, shape[0]) # y def scale_image(masks, im0_shape, ratio_pad=None): """ Takes a mask, and resizes it to the original image size Args: masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3]. im0_shape (tuple): the original image shape ratio_pad (tuple): the ratio of the padding to the original image. Returns: masks (torch.Tensor): The masks that are being returned. """ # Rescale coordinates (xyxy) from im1_shape to im0_shape im1_shape = masks.shape if im1_shape[:2] == im0_shape[:2]: return masks if ratio_pad is None: # calculate from im0_shape gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] top, left = int(pad[1]), int(pad[0]) # y, x bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0]) if len(masks.shape) < 2: raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}') masks = masks[top:bottom, left:right] masks = cv2.resize(masks, (im0_shape[1], im0_shape[0])) if len(masks.shape) == 2: masks = masks[:, :, None] return masks def xyxy2xywh(x): """ Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner. Args: x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format. Returns: y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format. """ assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}' y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center y[..., 2] = x[..., 2] - x[..., 0] # width y[..., 3] = x[..., 3] - x[..., 1] # height return y def xywh2xyxy(x): """ Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner. Args: x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format. Returns: y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format. """ assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}' y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy dw = x[..., 2] / 2 # half-width dh = x[..., 3] / 2 # half-height y[..., 0] = x[..., 0] - dw # top left x y[..., 1] = x[..., 1] - dh # top left y y[..., 2] = x[..., 0] + dw # bottom right x y[..., 3] = x[..., 1] + dh # bottom right y return y def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): """ Convert normalized bounding box coordinates to pixel coordinates. Args: x (np.ndarray | torch.Tensor): The bounding box coordinates. w (int): Width of the image. Defaults to 640 h (int): Height of the image. Defaults to 640 padw (int): Padding width. Defaults to 0 padh (int): Padding height. Defaults to 0 Returns: y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box. """ assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}' y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y return y def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): """ Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height, normalized) format. x, y, width and height are normalized to image dimensions Args: x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format. w (int): The width of the image. Defaults to 640 h (int): The height of the image. Defaults to 640 clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False eps (float): The minimum value of the box's width and height. Defaults to 0.0 Returns: y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format """ if clip: clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}' y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center y[..., 2] = (x[..., 2] - x[..., 0]) / w # width y[..., 3] = (x[..., 3] - x[..., 1]) / h # height return y def xywh2ltwh(x): """ Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates. Args: x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format Returns: y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format """ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y return y def xyxy2ltwh(x): """ Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right Args: x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format Returns: y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format. """ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[..., 2] = x[..., 2] - x[..., 0] # width y[..., 3] = x[..., 3] - x[..., 1] # height return y def ltwh2xywh(x): """ Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center Args: x (torch.Tensor): the input tensor Returns: y (np.ndarray | torch.Tensor): The bounding box coordinates in the xywh format. """ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[..., 0] = x[..., 0] + x[..., 2] / 2 # center x y[..., 1] = x[..., 1] + x[..., 3] / 2 # center y return y def xyxyxyxy2xywhr(corners): """ Convert batched Oriented Bounding Boxes (OBB) from [xy1, xy2, xy3, xy4] to [xywh, rotation]. Args: corners (numpy.ndarray | torch.Tensor): Input corners of shape (n, 8). Returns: (numpy.ndarray | torch.Tensor): Converted data in [cx, cy, w, h, rotation] format of shape (n, 5). """ is_numpy = isinstance(corners, np.ndarray) atan2, sqrt = (np.arctan2, np.sqrt) if is_numpy else (torch.atan2, torch.sqrt) x1, y1, x2, y2, x3, y3, x4, y4 = corners.T cx = (x1 + x3) / 2 cy = (y1 + y3) / 2 dx21 = x2 - x1 dy21 = y2 - y1 w = sqrt(dx21 ** 2 + dy21 ** 2) h = sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2) rotation = atan2(-dy21, dx21) rotation *= 180.0 / math.pi # radians to degrees return np.vstack((cx, cy, w, h, rotation)).T if is_numpy else torch.stack((cx, cy, w, h, rotation), dim=1) def xywhr2xyxyxyxy(center): """ Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4]. Args: center (numpy.ndarray | torch.Tensor): Input data in [cx, cy, w, h, rotation] format of shape (n, 5). Returns: (numpy.ndarray | torch.Tensor): Converted corner points of shape (n, 8). """ is_numpy = isinstance(center, np.ndarray) cos, sin = (np.cos, np.sin) if is_numpy else (torch.cos, torch.sin) cx, cy, w, h, rotation = center.T rotation *= math.pi / 180.0 # degrees to radians dx = w / 2 dy = h / 2 cos_rot = cos(rotation) sin_rot = sin(rotation) dx_cos_rot = dx * cos_rot dx_sin_rot = dx * sin_rot dy_cos_rot = dy * cos_rot dy_sin_rot = dy * sin_rot x1 = cx - dx_cos_rot - dy_sin_rot y1 = cy + dx_sin_rot - dy_cos_rot x2 = cx + dx_cos_rot - dy_sin_rot y2 = cy - dx_sin_rot - dy_cos_rot x3 = cx + dx_cos_rot + dy_sin_rot y3 = cy - dx_sin_rot + dy_cos_rot x4 = cx - dx_cos_rot + dy_sin_rot y4 = cy + dx_sin_rot + dy_cos_rot return np.vstack((x1, y1, x2, y2, x3, y3, x4, y4)).T if is_numpy else torch.stack( (x1, y1, x2, y2, x3, y3, x4, y4), dim=1) def ltwh2xyxy(x): """ It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right Args: x (np.ndarray | torch.Tensor): the input image Returns: y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes. """ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[..., 2] = x[..., 2] + x[..., 0] # width y[..., 3] = x[..., 3] + x[..., 1] # height return y def segments2boxes(segments): """ It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) Args: segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates Returns: (np.ndarray): the xywh coordinates of the bounding boxes. """ boxes = [] for s in segments: x, y = s.T # segment xy boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy return xyxy2xywh(np.array(boxes)) # cls, xywh def resample_segments(segments, n=1000): """ Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each. Args: segments (list): a list of (n,2) arrays, where n is the number of points in the segment. n (int): number of points to resample the segment to. Defaults to 1000 Returns: segments (list): the resampled segments. """ for i, s in enumerate(segments): s = np.concatenate((s, s[0:1, :]), axis=0) x = np.linspace(0, len(s) - 1, n) xp = np.arange(len(s)) segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)], dtype=np.float32).reshape(2, -1).T # segment xy return segments def crop_mask(masks, boxes): """ It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box. Args: masks (torch.Tensor): [n, h, w] tensor of masks boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form Returns: (torch.Tensor): The masks are being cropped to the bounding box. """ n, h, w = masks.shape x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(n,1,1) r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,1,w) c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(1,h,1) return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2)) def process_mask_upsample(protos, masks_in, bboxes, shape): """ Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher quality but is slower. Args: protos (torch.Tensor): [mask_dim, mask_h, mask_w] masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms bboxes (torch.Tensor): [n, 4], n is number of masks after nms shape (tuple): the size of the input image (h,w) Returns: (torch.Tensor): The upsampled masks. """ c, mh, mw = protos.shape # CHW masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW masks = crop_mask(masks, bboxes) # CHW return masks.gt_(0.5) def process_mask(protos, masks_in, bboxes, shape, upsample=False): """ Apply masks to bounding boxes using the output of the mask head. Args: protos (torch.Tensor): A tensor of shape [mask_dim, mask_h, mask_w]. masks_in (torch.Tensor): A tensor of shape [n, mask_dim], where n is the number of masks after NMS. bboxes (torch.Tensor): A tensor of shape [n, 4], where n is the number of masks after NMS. shape (tuple): A tuple of integers representing the size of the input image in the format (h, w). upsample (bool): A flag to indicate whether to upsample the mask to the original image size. Default is False. Returns: (torch.Tensor): A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w are the height and width of the input image. The mask is applied to the bounding boxes. """ c, mh, mw = protos.shape # CHW ih, iw = shape masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW downsampled_bboxes = bboxes.clone() downsampled_bboxes[:, 0] *= mw / iw downsampled_bboxes[:, 2] *= mw / iw downsampled_bboxes[:, 3] *= mh / ih downsampled_bboxes[:, 1] *= mh / ih masks = crop_mask(masks, downsampled_bboxes) # CHW if upsample: masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW return masks.gt_(0.5) def process_mask_native(protos, masks_in, bboxes, shape): """ It takes the output of the mask head, and crops it after upsampling to the bounding boxes. Args: protos (torch.Tensor): [mask_dim, mask_h, mask_w] masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms bboxes (torch.Tensor): [n, 4], n is number of masks after nms shape (tuple): the size of the input image (h,w) Returns: masks (torch.Tensor): The returned masks with dimensions [h, w, n] """ c, mh, mw = protos.shape # CHW masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) masks = scale_masks(masks[None], shape)[0] # CHW masks = crop_mask(masks, bboxes) # CHW return masks.gt_(0.5) def scale_masks(masks, shape, padding=True): """ Rescale segment masks to shape. Args: masks (torch.Tensor): (N, C, H, W). shape (tuple): Height and width. padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular rescaling. """ mh, mw = masks.shape[2:] gain = min(mh / shape[0], mw / shape[1]) # gain = old / new pad = [mw - shape[1] * gain, mh - shape[0] * gain] # wh padding if padding: pad[0] /= 2 pad[1] /= 2 top, left = (int(pad[1]), int(pad[0])) if padding else (0, 0) # y, x bottom, right = (int(mh - pad[1]), int(mw - pad[0])) masks = masks[..., top:bottom, left:right] masks = F.interpolate(masks, shape, mode='bilinear', align_corners=False) # NCHW return masks def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False, padding=True): """ Rescale segment coordinates (xy) from img1_shape to img0_shape Args: img1_shape (tuple): The shape of the image that the coords are from. coords (torch.Tensor): the coords to be scaled of shape n,2. img0_shape (tuple): the shape of the image that the segmentation is being applied to. ratio_pad (tuple): the ratio of the image size to the padded image size. normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False. padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular rescaling. Returns: coords (torch.Tensor): The scaled coordinates. """ if ratio_pad is None: # calculate from img0_shape gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] if padding: coords[..., 0] -= pad[0] # x padding coords[..., 1] -= pad[1] # y padding coords[..., 0] /= gain coords[..., 1] /= gain clip_coords(coords, img0_shape) if normalize: coords[..., 0] /= img0_shape[1] # width coords[..., 1] /= img0_shape[0] # height return coords def masks2segments(masks, strategy='largest'): """ It takes a list of masks(n,h,w) and returns a list of segments(n,xy) Args: masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160) strategy (str): 'concat' or 'largest'. Defaults to largest Returns: segments (List): list of segment masks """ segments = [] for x in masks.int().cpu().numpy().astype('uint8'): c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] if c: if strategy == 'concat': # concatenate all segments c = np.concatenate([x.reshape(-1, 2) for x in c]) elif strategy == 'largest': # select largest segment c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2) else: c = np.zeros((0, 2)) # no segments found segments.append(c.astype('float32')) return segments def clean_str(s): """ Cleans a string by replacing special characters with underscore _ Args: s (str): a string needing special characters replaced Returns: (str): a string with special characters replaced by an underscore _ """ return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s)